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1 The Setup

scuff-transmission considers geometries with 2D periodicity, i.e. the struc-
ture consists of a unit-cell geometry of finite extent in the z direction that is
infinitely periodically replicated in both the x and y directions. The structure
is illuminated either from below (the default) or from above by a plane wave
with propagation vector k confined to the xz plane.

Working at angular frequency ω, let the free-space wavelength be k0 = ω
c ,

and let the relative permittivity and permeability of the lowermost and upper-
most regions in the geometry be εL,U and µL,U. The wavenumber, refractive
index, and relative wave impedance in the uppermost and lowermost regions
are

kL = nL · k0, nL ≡
√
εLµL, ZL =

√
µL

εL

kU = nU · k0, nU ≡
√
εUµU, ZU =

√
µU

εU
.

I will refer to region from which the planewave originates (either the uppermost
or lowermost homogeneous region in the scuff-em geometry) as the “incident”
region. The region into which the planewave eventually emanates is the “trans-
mitted” region. I will use the sub/superscripts I, T to denote these quantities;
thus the wavenumber and relative wave impedance in the incident and trans-
mitted regions are{

kI, ZI, kT, ZT

}
=


{
kL, ZL, kU, ZU

}
, wave incident from below{

kU, ZU, kL, ZL

}
, wave incident from above

In what follows, I will use the symbols kI,kR,kT respectively to denote the
propagation vectors of the incident, reflected, and transmitted waves. I will
take these vectors always to live in the xz plane (i.e. k has no y component,
ky = 0). I will let θI and θT be the angles of incidence and transmission (the
angles between the incident and transmitted wavevector and the z axis).

wave incident from below: kI = kL

[
sin θI x̂ + cos θI ẑ

]
wave incident from above: kI = kU

[
sin θI x̂− cos θI ẑ

]
The reflected wavevector is

wave incident from below: kR = kL

[
sin θI x̂− cos θI ẑ

]
wave incident from above: kR = kL

[
sin θI x̂ + cos θI ẑ

]
The transmitted wavevector is

wave incident from below: kT = kU

[
sin θT x̂ + cos θT ẑ

]
wave incident from above: kT = kL

[
sin θT x̂− cos θT ẑ

]
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The incident and transmitted angles are related by

nI sin θI = nT sin θT.

For a general vector v, I will define v̂ = v/|v| to be a unit vector in the direction
of v.

Definition of scattering coefficients

The incident, reflected, and transmitted fields may be written in the form

EI(x) = E0ε
Ieik

I·x HI(x) = H0ε
Ieik

I·xl

ER(x) = rE0ε
Reik

R·x HR(x) = rH0ε
Reik

R·x

ET(x) = tE0ε
Teik

T·x HT(x) = tH ′0 ε
T, eik

T·x

(1)

where E0 is the incident field magnitude, εI,R,T are E-field polarization vectors,
εI,R,T are H-field polarization vectors, and we have

H0 ≡
i|k|E0

ZIZ0
, H ′0 ≡

i|k|E0

ZTZ0
, ε ≡ k̂× ε, ε = −k̂× ε.

The polarization vectors are given by

for the TE case: εI

TE = εR

TE = εT

TE = ŷ, εI,R,T

TE = k̂I,R,T × ŷ

for the TM case: εI

TM = εR

TM = εT

TM = ŷ εI,R,T

TM = −k̂I,R,T × ŷ

Equations (??) define the reflection and transmission coefficients r and t
computed by scuff-transmission.
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2 Scattering coefficients from surface currents

Next we consider an extended structure described by Bloch-periodic boundary
conditions, i.e. all fields and currents satisfy

Q(x + L) = eikB·L Q(x) (2)

where Q is a field (E or H) or a surface current (K or N) and the Bloch
wavevector is1

kB = kI sin θI x̂ = kT sin θT x̂.

For plane waves like (??), equation (??) actually holds for any arbitrary vector
L; for our purposes we will only need to use it for certain special vectors L
determined by the structure of the lattice in our PBC geometry. We will derive
expressions for the plane-wave reflection and transmission coefficients in terms
of the surface-current distribution in the unit cell of the structure.

Fields from surface currents

On the other hand, the scattered E fields in the incident and transmitted regions
may be obtained in the usual way from the surface-current distributions on the
surfaces bounding those regions. For example, at points in the transmitted
medium, the scattered (that is, transmitted) E field is given by

ET(x) =

∮
ST

{
ΓEE;T(x,x′) ·K(x′) + ΓEM;T(x,x′) ·N(x′)

}
dx′

= ikT

∮
S

{
Z0ZTG(kT; x,x′) ·K(x′) + C(kT; x,x′) ·N(x′)

}
dx′ (3)

where ST is the surface bounding the transmitted region and G,C are the
homogeneous dyadic GFs for that region. Using the Bloch periodicity of the
surface currents, i.e. {

K(x + L)

N(x + L)

}
= eikB·L

{
K(x)

N(x)

}

we can restrict the surface integral in (??) to just the lattice unit cell:

ET(x) = ikT

∫
UC

{
Z0ZTG(kT; x,x′) ·K(x′) + C(kT; x,x′) ·N(x′)

}
dx′ (4)

where the periodic Green’s functions are{
G(x,x′)

C(x,x′)

}
≡
∑
L

eikB·L

{
G(x,x′ + L)

C(x,x′ + L)

}
(5)

1Recall our convention that the propagation vector lives in the xy plane.
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I now invoke the following representation of the dyadic Green’s functions (Chew,
1995): for z > z′,

G(k;ρ, z;ρ′, z′) =

∫
dq

(2π)2
G̃±(k; q)eiq·(ρ−ρ

′)e±iqz(z−z
′) (6a)

C(k;ρ, z;ρ′, z′) =

∫
dq

(2π)2
C̃±(k; q)eiq·(ρ−ρ

′)e±iqz(z−z
′) (6b)

where q = (qx, qy) is a two-dimensional Fourier wavevector, dq = dqxdqy, qz =√
k2 − |q|2, ± = sign(z − z′), and

G̃±(k; q) =
i

2qz

 1 0 0
0 1 0
0 0 1

− 1

k2

 q2x qxqy ±qxqz
qyqx q2y ±qyqz
±qzqx ±qzqy q2z


C̃±(k; q) =

i

2qzk

 0 ±qz −qy
∓qz 0 qx
qy −qx 0

 .

Inserting (??) into (??), I obtain, for the periodic version of e.g. the G kernel,

G(k;ρ, z;ρ′, z) =

∫
dq

(2π)2
G̃±(k; q)eiq·(ρ−ρ

′)e±iqz(z−z
′)
∑
L

ei(kB−q)·L

︸ ︷︷ ︸
VBZ

∑
Γ δ(q−k−Γ)

= V−1UC

∑
q=kB+Γ

G̃±(k; q)eiq·(ρ−ρ
′)e±iqz(z−z

′)

where the sum over Γ runs over reciprocal lattice vectors; the prefactor VBZ, the
volume of the Brillouin zone, is related to the unit-cell volume by VBZ = 4π2/VUC

for a 2D square lattice. Similarly, we find

C(k;ρ, z;ρ′, z) = V−1UC

∑
q=kB+Γ

C̃±(k; q)eiq·(ρ−ρ
′)e±iqz(z−z

′).

Keeping only the Γ = 0 term in these sums, the scattered E-fields in the upper-
most and lowermost regions are thus

Eupper(x) = ei(kUxx+kUzz)
[
ikUZ0ZUG̃+(kU; kB)K̃U(kB) + ikUC̃+(kU; kB)Ñ(kB)

]
(7)

Elower(x) = ei(kLxx−kLzz)
[
ikLZ0ZUG̃−(kL; kB)K̃(kB) + ikLC̃−(kL; kB)Ñ(kB)

]
(8)

where e.g. K̃U is something like the two-dimensional Fourier transform of the
surface currents on the boundary of the uppermost region RU:

K̃U(kB) ≡ 1

VUC

∫
∂RU

K(ρ′, z′)e−ikB·ρ′−iqz|z′|dx′, q2z = k2U − |kB|2.
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with K̃L and ÑU,L defined similarly.
Comparing this to (??c), we see that the transmission and reflection coeffi-

cients for the polarization defined by polarization vector ε are given by{
t
r

}
= ikUZ0ZUε

†G̃+(kU,kB)K̃U(kB) + ikUε
†C̃+(kU,kB)Ñ(kB) (9){

r
t

}
= ikLZ0ZLε

†G̃−(kL,kB)K̃L(kB) + ikLε
†C̃−(kL,kB)Ñ(kB) (10)

The expressions on the RHS compute the upper (lower) quantities on the LHS
for the case in which the plane wave is incident from below (above).

The K̃ and Ñ quantities are given by sums of contributions from individual
basis functions; for example,

K̃U(q) =
1

VUC

∑
bα∈∂RU

kαb̃α(q), ÑU(q) = − Z0

VUC

∑
bα∈∂RU

nαb̃α(q)

where the sums are over all RWG basis functions that live on surfaces bound-
ing the uppermost medium and {kα, nα} are the surface-current coefficients
obtained as the solution to the scuff-em scattering problem.

2.1 Computation of b̃(q)

For RWG functions the quantity b̃(q) may be evaluated in closed form:

b̃α(q) ≡
∫
sup bα

bα(x)e−iq·x dx

= `α

∫ 1

0

du

∫ u

0

dv

{
e−iq·[Q

++uA++vB]
(
uA+ + vB

)
− e−iq·[Q

−+uA−+vB]
(
uA− + vB

)}
= `α

{
e−iq·Q

+
[
f1
(
q ·A+,q ·B

)
A+ + f2

(
q ·A+,q ·B

)
B
]

− e−iq·Q
−
[
f1
(
q ·A−,q ·B

)
A− + f2

(
q ·A−,q ·B

)
B
]}

where

f1(x, y) =

∫ 1

0

∫ u

0

ue−i(ux+vy) dv du

f2(x, y) =

∫ 1

0

∫ u

0

ve−i(ux+vy) dv du.


