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Abstract

The T-matrix approach to fluctuational electrodynamics, pioneered by
the MIT Casimir theory group led by Professors Kardar and Jaffe, has
yielded a bountiful smorgasbord of analytical formulas expressing quan-
tities in fluctuational electrodynamics—including equilibrium and non-
equilibrium Casimir forces and thermal heat-transfer rates for compact
and extended bodies—in terms of the T-matrices of the bodies in ques-
tion [1, 2]. Although the analytical insight afforded by these formulas
is immensely valuable, their practical application has typically been re-
stricted to the small catalog of highly symmetric bodies—such as homo-
geneous spheres—for which T-matrix element may be computed in closed
form.

In its earliest incarnation, buff-em was born as an attempt to extend
the T-matrix approach to a more general class of bodies by computing
T-matrices numerically. However, in the course of implementing these
calculations I discovered that the T-matrix formalism may in fact be un-
derstood as simply a disguised version of the well-known volume-integral-
equation (VIE) approach to computational electromagnetism, and that
in implementing a numerical tool for computing T-matrices one is in fact
implementing a VIE solver.

The buff-em suite1 consists of a core library (libbuff) implement-
ing this solver—using SWG basis functions [3]—together with application
modules for classical scattering (buff-scatter) and non-equilibrium fluc-
tuational electrodynamics (buff-neq).

1buff-em stands for bulk f ield formulation of electromagnetism.

1
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1 VIE formulation of classical EM scattering

In this section I rederive the volume-integral-equation (VIE) approach to classi-
cal electromagnetic scattering. This formulation is standard, but I here describe
it using terminology and symbols that emphasize the connection to the T-matrix
scattering approach used by the Kardar-Jaffe group.

1.1 Continuous VIE formulation

Consider a material body with relative permittivity tensor ε(x) lying in vacuum
and irradiated by monochromatic sources which may lie inside or outside the
body. Let the electric field due to the sources be Einc and let JI(x) be the
induced volume current density throughout the bulk of the body. (We work
at frequency ω and assume time dependence of all field and currents ∝ e−iωt.)
The total electric field at any point is a sum of “incident” and “scattered”
contributions:2

Etot = Einc + Escat (1)

= Einc + ikZ0G ∗ JI (2)

where k = ω/c is the (free-space) wavenumber, Z0 =
√
µ0/ε0 is the impedance

of free space3, ∗ denotes convolution, and G is the free-space dyadic Green’s
function:

Gij(x,x′) =
(
δij −

1

k2
∂i∂j

)eikr
4πr

(r ≡ |r| = |x− x′|) (3)

=
eikr

4πk2r3

[
f1(ikr)δij + f2(ikr)

rirj
r2

]
(4)

f1(x) ≡ −1 + x− x2, f2(x) ≡ 3− 3x+ x2.

On the other hand, the induced current is related to the total field according to

JI(x) = −i k
Z0

[
ε(x)− 1

]
·Etot(x)

≡ − 1

ikZ0
V(x) ·Etot(x) (5)

where V ≡ k2
[
1 − ε(x)

]
is sometimes [1] known as the “potential.” At points

not in free space, i.e. points at which ε(x) 6= 1, we can invert this equation to

2We put the terms “incident” and “scattered” in quotes to remind readers that the
“incident”-field sources may in fact lie inside the body; in this case it is not quite right
to refer to the field they produce as being “incident” on the body, but the terminology is
convenient nonetheless.

3Here and throughout we consistently eliminate all reference to the free-space permittivity
and permeability constants ε0, µ0 in favor of Z0 =

√
µ0/ε0 and c = 1/

√
ε0µ0. For example,

we write the combinations {ε0ω, µ0ω} respectively in the form { k
Z0
, kZ0} where k = ω/c is

the free space wavelength.
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read

−ikZ0

V

(x) · JI(x) = Etot(x)

where

V

≡ V−1. Now insert (2):

−ikZ0

V

(x) · JI(x) = Einc + ikZ0G ? JI (6)

Rearranging and writing out the convolution, we obtain a volume-integral equa-
tion for JI:

−ikZ0

[

V

(x) · JI(x) +

∫
G(x,x′) · JI(x′) dx′

]
= Einc(x). (7)

In what follows it will be convenient to think of the LHS here as the convolution
of just a single operator with JI:

−ikZ0

∫

T

(x,x′) · JI(x′) dx′ = Einc(x). (8)

where T

(x,x′) =

V

(x)δ(x− x′) + G(x,x′). (9)

(The symbol
T

is pronounced “tee-inverse” or “eet”.)

1.2 Discretized VIE formulation

Now let bα be some convenient set of N vector-valued basis functions and
approximate the induced current in the form

JI(x) ≈
∑
α

jIαbα(x). (10)

Insert into (8) and “test” both sides with the elements of the set {bα} to obtain
a discretized version of (8) in the form of an N ×N linear system:

T

· jI = v (11)

where the elements of the vector jI are the expansion coefficients in (10) and
the elements of

T

and v are

T

αβ =
〈
bα

∣∣∣ T∣∣∣bβ〉, vα = − 1

ikZ0

〈
Einc

∣∣∣bβ〉. (12)
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VIE matrix for geometries containing multiple bodies

Equation (11) applies to the case in which we have only a single material body.
For a geometry involving N separate bodies, this is generalized to read

T

1 G12 · · · G1N

G21

T

2 · · · G2N

...
...

. . .
...

GN1 GN2 · · ·

T

N


︸ ︷︷ ︸

M


jI1
jI2
...

jIN


︸ ︷︷ ︸

j

=


v1

v2

...
vN

 .

︸ ︷︷ ︸
v

(13)

where M is the VIE matrix for the composite system. Here the diagonal blocks
involve just the matrix elements of the inverse T-operator [defined by equation
(9) with the

V

operator appropriate for the nth body] while the off-diagonal
blocks involve only the matrix elements of the G operator.

The matrices M and v in equation (13) are the quantities computed by the
AssembleVIEMatrix() and AssembleRHSVector() methods of the SWGGeometry
class in buff-em.

Computation of scattered fields

For a geometry irradiated by incident fields {E,H}inc, the total fields at x are

Etot(x) = Einc(x) + Escat(x) (14)

Htot(x) = Hinc(x) + Hscat(x) (15)

Escat(x) =
∑
α

jαEα(x) (16)

Hscat(x) =
∑
α

jαHα(x) (17)

where {E,H}α(x) are the fields due to basis function bα populated with unit
strength:

Eα(x) ≡ ikZ0

∫
supbα

G(x,x′)bα(x′)dx′ (18)

Hα(x) ≡ −ik
∫

supbα

C(x,x′)bα(x′)dx′. (19)

Scattered and total fields are computed by the GetFields() method of the
SWGGeometry class in the buff-em core library.
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2 Computation of power, force, and torque

As is true for surface-integral solvers like scuff-em, in volume-integral solvers
like buff-em there are multiple distinct ways of computing the power, force,
and torque (PFT) on a body.

2.1 Displaced surface-integral (DSI) PFT

A first approach is to evaluate surface integrals of the Poynting vector and
Maxwell stress tensor over a closed bounding surface S containing the body but
displaced from its surface:

P abs =
1

2

∮
S
F†(x)N P

(
n̂(x)

)
F(x) dA

F · û =
1

2

∮
S
F†(x)N F

(
n̂(x), û

)
F(x) dA

T · û =
1

2

∮
S
F†(x)N T

(
n̂(x), û

)
F(x) dA

Here F =
(
E
H

)
is the 6-vector of fields computed from (15), and the N matrices

are certain constant 6× 6 matrices whose entries depend on the surface normal
n̂ to S at x.

2.2 JDEPFT

An alternative to the surface-integral method of the previous section is to com-
pute the power, force and torque on a body using a volume-integral approach:

P abs =
1

2
Re

∫
J∗ ·E dV (20a)

Fi =
1

2ω
Im

∫
J∗ · ∂iE dV (20b)

Ti =
1

2ω
Im

∫ [
J∗ ×E + J∗ · ∂θiE

]
dV (20c)

where J is the induced current and E is the total field. Equation (20a) is
just the usual Joule heating, while Equations (20b,c) follow from Lorenz-force
considerations and are derived in Appendix B. I call equations (20) the “J dot
E” or JDE approach to power, force, and torque computation. [The second
term in (20c) is typically small and will be neglected below

For implementation purposes, it is convenient to separate the total field E
in equations (20) into incident and scattered portions and to write

{P abs, Fi, Ti} = {P abs, Fi, Ti}JI + {P abs, Fi, Ti}JJ (21)

where the “JI” terms involve the interaction of J with the incident field Einc

alone, while the “JJ” terms involve the interaction of J with itself.
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The JI contribution to the power is

P JI =
1

2
Re

∫
J∗ ·Einc dV (22a)

=
1

2
Re

∑
α

j∗α

〈
bα

∣∣∣Einc
〉

(22b)

and similarly

F JI
i =

1

2ω
Im

∑
α

j∗α

〈
bα

∣∣∣∂iEinc
〉

(22c)

T JI
i =

1

2ω
Im

∑
α

j∗α

〈
bα ×Einc

〉
. (22d)

The three-dimensional integrals involved in the matrix elements in (22) are non-
singular and evaluated in buff-em by low-order numerical cubature (Appendix
D).

On the other hand, the JJ contributions to the power, force, and torque
involve six -dimensional integrals:

P JJ =
1

2
Re

∫
J∗(x) ·Escat(x) dx (23a)

Using Escat = ikG ? J, this becomes

=
kZ0

2
Re

∫∫
J∗i (x)

(
iGij(x,x′)

)
Jj(x

′) dx dx′ (23b)

and similarly

Fi =
Z0

2c
Im

∫∫
J∗j

(
i∂iGjk

)
Jk dx dx

′ (23c)

Ti =
Z0

2c
Im εijk

∫∫
J∗j

(
iGk`

)
J` dx dx

′ (23d)

Although equations (23) appear to be singular integrals, this appearance is
misleading, as is demonstrated by the following rewriting, which follows from
Onsager reciprocity [Gij(x,y) = Gji(y,x)]:

P JJ = −kZ0

2

∫∫ [
Re
(
J∗i Jj

)
Im Gij

]
dV dV ′ (24a)

F JJ
i = −Z0

2c

∫∫ [
Im
(
J∗j Jk

)
Im ∂iGjk

]
dV dV ′ (24b)

T JJ
i =

Z0

2c
εijk

∫∫ [
Im
(
J∗j J`

)
Im Gk`

]
dV dV ′ (24c)
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These equations involve only the imaginary part of G, which is non-singular ;
indeed, in the short-distance limit one finds immediately from (4) that

Im Gij(r) =
k

6π
δij −

k3r2

30π

[
δij −

1

2

rirj
r2

]
+
k5r4

560π

[
δij −

2

3

rirj
r2

]
+O(r6) (25)

The discretized versions of equations (24) read, upon accounting for simplifying
symmetries,

P JJ = −kZ0

∑′

β≥α

(
Re j∗αjβ

)〈
bα

∣∣∣Im G
∣∣∣bβ〉 (26a)

F JJ
i = −Z0

c

∑
β>α

(
Im j∗αjβ

)〈
bα

∣∣∣Im ∂iG
∣∣∣bβ〉 (26b)

T JJ
i = −Z0

c

∑
β>α

(
Im j∗αjβ

)
εijk

〈
bαj

(
Im Gk`

)
bβ`

〉
(26c)

where the primed sum in (26) indicates that summands with α = β are to be
weighted by 1

2 . The matrix elements in (26) involve nonsingular 6-dimensional
integrals which are evaluated in buff-em by simple numerical cubature.

Multipole expansion of PFT quantities

Inserting the short-distance expansion (25) into (24a) and keeping only terms
of lowest order in k yields

P JJ ≈ −k
2Z0

12π

∫
J∗i (x)dx︸ ︷︷ ︸
iωp∗i

∫
Ji(x

′)dx′︸ ︷︷ ︸
−iωpi

(27)

= −c
2k4Z0

12π
|p|2 (28)

where p = − 1
iω

∫
JdV is the dipole moment of the induced current distribution.

Note that (28) is minus the usual expression for the total power radiated by a
point dipole radiator.

Proceeding similarly for the force, from (25) one first finds

∂iGjk =
k3

60π

(
rjδik + rkδij − 4riδjk

)
+O(k5)

whereupon (24b) reads

F JJ
i ≈ −

k3Z0

120πc
Im

∫ {
J∗j (x)(x− x′)jJi(x

′) + J∗i (x)(x− x′)jJj(x
′)

− 4J∗j (x)(x− x′)iJj(x
′)

}
dx dx′

= −k
3Z0

60πc
Im
[
M∗jjMi +M∗ijMj − 4M∗jiMj

]
(29)
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where I defined

Mi ≡
∫
Ji(x) dV, Mij ≡

∫
Ji(x)xj dV.

The quantity Mi is related to the electric dipole moment p by

pi = − 1

iω
Mi.

On the other hand,Mij is related to the magnetic dipole and electric quadrupole
moments; basically, the magnetic dipole moment m is the antisymmetric part
ofMij , while the electric quadrupole moment Qij is the symmetric part. From
standard definitions in e.g. Jackson one finds

mi =
1

2
εijk

∫
xiJj(x)dV

=
1

2
εijkMji

= −1

2
εijkMij

Qij = − 1

iω

∫ {
3Jixj + 3xiJj − 2Jkxkδij

}
dV

= − 1

iω

[
3Mij + 3Mji − 2δijMkk

]
.

Using these definitions in (30) and performing some algebra, one finds the lowest-
order terms in the multipole expansion of the self-force:

F JJ
i ≈

k4Z0

12π
Re
(
m∗ × p

)
i
+
ck5Z0

120π
Im
(
Q∗p

)
i

(30)

The quantity in the second term involves the matrix-vector product of the 3×3
matrix Q∗ with the 3-vector p.

Finally, for the torque, inserting (25) into (24b) yields

T JJ
i ≈ − kZ0

12πc
εijkIm

{[∫
J∗jdV

] [∫
JkdV

]}
(31)

= −ck
3Z0

6π

(
Re p× Im p

)
i
. (32)

2.3 OPFT

From equation (??), the total field E may be expressed in terms of J according
to

E = −ikZ0V−1J. (33)
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Using this in equation (20) yields

P =
kZ0

2
Im

∫
J∗ · V−1 · J dV (34a)

Fi = −Z0

2c
Re

∫
J∗ · ∂i

[
V−1 · J

]
dV (34b)

Ti = −Z0

2c
Re

∫
J∗ ×

[
V−1 · J

]
dV (34c)

The discretized versions of these formulas involve only overlap integrals between
SWG basis functions, which vanish unless the pairs of basis functions share one
or more common tetrahedra. Thus they amount to vector-matrix-vector prod-
ucts with highly sparse matrices and are thus, in principle, the most computa-
tionally efficient technique for computing PFTs; However, equation (33) is only
approximately satisfied in a numerical solver, so

I refer to (34) as the “overlap PFT” (OPFT) formulas.
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3 FVC approach to fluctuation-induced phenom-
ena

In this section I consider a collection of one or more material bodies {Bn}, at var-
ious temperatures {Tn} and embedded in an environment at temperature Tenv,
and derive a sequence of concise matrix-trace formulas expressing thermally and
quantum-mechanically averaged heat-transfer rates, forces, and torques on the
bodies in terms of the T and G matrices discussed in the previous section. Be-
cause the resulting energy and momentum transfers may be viewed as arising
from fluctuations in volume currents in the bodies, I term this the “fluctuating
volume-current” (FVC) approach to fluctuation physics.

The derivation proceeds in two steps.

1. I first consider a fixed, deterministic volume electric current distribution
JF(x)—confined to the interiors of our material bodies but otherwise
arbitrary—and use the VIE formalism of the previous section to derive
compact expressions for the rates of energy and momentum absorption
by the bodies. These expressions will be quadratic (bilinear) functions
of JF. (The F superscript stands for “free”; it distinguishes the fixed,
externally-imposed current JF from the induced current JI to which it
gives rise.)

2. I then average over thermal and quantum-mechanical fluctuations of JF

to derive temperature-dependent mean heat-transfer rates and forces on
the bodies.

In what follows I will go back and forth somewhat freely between continuous
operator/field notation [involving symbols like G and E(x)] and discretized ma-
trix/vector notation (involving symbols like G and e). For a precise dictionary
of the correspondence, see Appendix A.

3.1 Energy and momentum transfer from volume-current
bilinears

Consider a collection of material bodies {Bn} and a fixed, deterministic volume
current distribution JF(x) that is nonzero only inside the bodies. (We work
at a fixed frequency ω with all fields and currents varying in time like e−iωt.)
In this section we derive formulas expressing time-average rates of energy and
momentum absorption by the bodies as bilinear functions of JF.

Induced currents from free currents

The free current distribution JF(x) excites an induced current distribution JI(x)
which we can determine using the VIE techniques of the previous section. In-
deed, taking JF as the source of the incident field in a scattering problem, we



Homer Reid: buff-em 12

have

Einc(r) = ikZ0G ? JF (35)

and the RHS vector of the discretized VIE system, equation (13), reads

v = −G jF (36)

where, for a geometry consisting of N bodies, the vectors and matrices have an
N -fold block structure:

v =


v1

v2

...

vN

 , G =


G11 G12 · · · G1N

G21 G22 · · · G2N

...
...

. . .
...

GN1 GN2 · · · GNN

 , jF =


jF1

jF2
...

jFN

 .

In particular, the nth subblock of jF is the projection of the free current dis-
tribution4 in body Bn, JF

n(x), onto the subset of basis functions whose support
lies in body n:

jFnα =

∫
bnα(r) · JF

n(r) dr. (37)

Now taking equation (36) to be the RHS of the VIE scattering problem (13),
we obtain an expression for the induced currents in terms of the free currents,

M jI = −GjF (38)

or

jI = −WGjF (39)

where W = M−1 is the inverse of the VIE matrix defined by (13).
The total current is

j = jF + jI

=
[
1−WG

]
jF. (40)

Fields from free currents

The E-field at an arbitrary point in space (either inside or outside a body) is
then simply the sum of contributions from fixed and induced currents:

E = ikZ0G ? (JF + JI) (41)

4Note that JF
n(x) is just the restriction of JF to the interior of Bn.
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or, in discretized form (Appendix A),

e = ikZ0G(jF + jI)

= ikZ0G
(
1−WG

)
jF (42)

where in going to the last line I used (39).
In what follows I will also need the the quantity ∂iE(r), i.e. the derivative

of E with respect to the evaluation point. Differentiating both sides of (41),
we see that the derivative operates on the first argument of G(r, r′) and leaves
everything else on the RHS untouched; thus we find simply

∂ie = ikZ0

[
∂iG

]
(jF + jI) (43)

where the matrix elements of the quantity in square brackets are[
∂iG

]
αβ

=

∫ ∫
bα(r)

[
∂

∂ri
G(r, r′)

]
bβ(r′) dr dr′.

Power absorption

The time-average rate at which body Bn absorbs power from the source distri-
bution JF is obtained by integrating the quantity 1

2Re J∗ · E over the interior
of Bn; here J is the total current in Bn, consisting of both free and induced
contributions:

Pn(ω) =
1

2
Re

∫
Bn

J∗(r) ·E(r) dr (44)

=
1

2
Re j†n · en

where we used equation (60). The n subscript on vectors picks out the subblock
corresponding to body n; using the projection matrices Pn defined by (??), we
could equivalently write this in the form

=
1

2
Re j†Pne

Now insert equations (40) and (42):

=
1

2
Re

{
ikZ0 jF†

[
1−G†W†

]
PnG

[
1−WG

]
jF
}

= −kZ0

2
Im Tr

{[
1−G†W†

]
PnG

[
1−WG

][
jFjF†

]}
. (45)

As advertised, this expression depends quadratically on JF, as witness the ap-
pearance of the outer matrix product jFjF†.
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Momentum absorption

The time-average rate at which body Bn absorbs i-directed momentum from
the source distribution JF—that is, the i-directed force on the body—may be
expressed as a volume-integral expression very similar to that of (44) but with
(i) “Re” replaced by “Im,” (ii) E replaced by ∂iE, and (iii) an extra factor of
ω in the denominator:

Tn(ω) =
1

2ω
Im

∫
Bn

J∗(r) · ∂iE(r)dr.

(This expression is quoted in Ref. ?; I also provide a quick derivation in Ap-
pendix B.) Going over to the discrete world, we have

=
1

2ω
Im j†Pn(∂ie)

Insert (40) and (42):

=
1

2ω
Im

{
ikZ0 jF†

[
1−G†W†

]
Pn(∂iG)

[
1−WG

]
jF
}

=
kZ0

2ω
Re Tr

{[
1−G†W†

]
Pn(∂iG)

[
1−WG

]
jFjF†

}
3.2 Statistical averages of volume-current bilinears

The classical, deterministic expressions derived above for time-average quanti-
ties Q (where Q is a power, force, or torque) all take the form

Q(w) ∝ Tr
{

Q(ω) ·
(
jFjF†

)}
(46)

where Q(ω) is a frequency-dependent matrix. The statistical average of such
quantities is performed by averaging over all possible free current distributions
JF(r), which amounts to computing the statistical average of the matrix jFjF†:〈

Q(ω)
〉
∝ Tr

{
Q(ω) ·

〈
jFjF†

〉
ω

}
.

This quantity represents just the contribution of frequency-ω fluctuations to the
average power, force or torque (PFT); the total PFT is given by integrating over
all frequencies, Q =

∫∞
0
〈Q(ω)〉 dω.

The elements of the matrix jFjF† are[
jFjF†

]
αβ

=

∫ ∫
bαi(r)JF

i (r)JF∗
j (r′)bβj(r

′) dr dr′ (47)

Now perform the statistical average. The only quantities on the RHS that
experience averaging are the factors of J in the integrand:〈

jFjF†
〉
αβ

=

∫ ∫
bαi(r)

〈
JF

i (r)JF∗
j (r′)

〉
bβj(r

′) dr dr′. (48)
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We now make use of the fluctuation-dissipation theorem in the form of the Rytov
correlation function,5〈

JF

i (r)JF∗
j (r′)

〉
=

2k

πZ0
Θ(T )δ(r− r′)Im εij(r). (49)

Inserting this into (48), we find〈
jFjF†

〉
αβ

=
2k

πZ0

∫
Θ
[
T (r)

]
bαi(r)

[
Im εij(r)

]
bβj(r) dr.

For the situation we consider here—involving N material bodies, throughout the
interior of which the temperature is constant—the full matrix takes the form

〈
jFjF†

〉
=

2k

πZ0


Θ(T1)Σ1 0 · · · 0

0 Θ(T2)Σ2 · · · 0
...

...
. . .

...
0 0 · · · Θ(TN )ΣN

 (50)

where Σn is just the matrix of basis-function overlaps with the imaginary part
of the relative dielectric function for the nth body, i.e.[

Σn

]
αβ

=

∫
bαi(r)

[
Im εn(r)

]
ij
bβj(r)dr. (51)

Here εn is the dielectric tensor for body Bn. For a basis of localized functions,
this matrix is highly sparse (for the SWG basis discussed below it contains just
7 nonzero elements per row). Moreover, numerical evaluation of the matrix ele-
ments of Σ is essentially costless, particularly compared to the cost of computing
matrix elements of G; it involves just a single three-dimensional numerical cu-
bature and may be carried out simultaneously with computation of the matrix
elements of the

V

operator needed to assemble the VIE matrix.
Inserting (50) into ...
The total heat transfer to, and the total i-directed force and torque on, a

destination body Bd are given by

Hd =

∫ ∞
0

Hd(ω)dΩ, Fdi =

∫ ∞
0

Fdi(ω)dΩ, Tdi =

∫ ∞
0

Tdi(ω)dΩ

where the contribution of each frequency ω may be written as the sum of equi-
librium contributions plus non-equilibrium contributions from all other bodies

5How do the units of this equation work? To answer this question, I think it’s easiest to
multiply both sides by Z0 to bring a factor of impedance to the LHS. Since J is the Fourier
transform of a volume current density, it has units of current

length2 · 1
frequency

. and the LHS then

has units of impedance·current2·time2

length4 = energy·time
length4 where we used that impedance · current2 =

power (for example, recall the ∼ I2R dependence of Joule heating) and power · time = energy.
Meanwhile, on the RHS, the dimensionful factors remaining after multiplying by Z0 are Θ
(energy) and kδ(r−r′) (length−4) so everything works out modulo a factor of inverse frequency
on the RHS, which I think must be coming from a factor like δ(ω − ω′) that is implicit
somewhere.



Homer Reid: buff-em 16

acting as sources, with each contribution expressed as a thermal/statistical fac-
tor times a generalized flux:

Hd(ω) =
∑
s

[
Θ
(
ω, Ts)−Θ

(
ω, Tenv

)]
Φenergy
s→d (ω)

Fdi(ω) = F eq
di

(
Tenv

)
+
∑
s

[
Θ
(
ω, Ts)−Θ

(
ω, Tenv

)]
Φlin mom
s→d (ω)

Tdi(ω) = T eq
di

(
Tenv

)
+
∑
s

[
Θ
(
ω, Ts)−Θ

(
ω, Tenv

)]
Φang mom
s→d (ω)

(For the heat transfer there is no equilibrium contribution, as there is no net
exchange of energy between equal-temperature bodies. There is a net transfer of
momentum, whereupon the force and torque expressions do contain equilibrium
contributions.)

Φenergy
s→d (ω) = −k

2

π
Im Tr

{[
G(1−WG)

]
ds

Σs

[
1−G†W†

]
sd

}
Φlin mom
s→d (ω) =

k2

πω
Re Tr

{[(
∂iG

)
(1−WG)

]
ds

Σs

[
1−G†W†

]
sd

}
Φang mom
s→d (ω) =

k2

πω
Re Tr

{[(
∂θG

)
(1−WG)

]
ds

Σs

[
1−G†W†

]
sd

}
The trace we compute in these expressions has the form

Tr
[

(XA)ds Σs

(
A†
)
sd

]
=
∑
ijk

(XA)ds,ij Σs,jk

[
A†sd

]
ki

=
∑
ijk

(
XA

)
di;sj

Σs,jkA
∗
di;sk

where
A =

(
1−WG

)
and

X = {G, ∂iG, ∂θG}.
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4 SWG Basis Functions

SWG basis functions are the three-dimensional analog of RWG basis functions.
They are defined on pairs of adjacent tetrahedra:

bα(x) =


+
Aα

3V +
α

(x−Q+
α ), x ∈ P+

α

− Aα

3V −α
(x−Q−α ), x ∈ P−α

where P±α are the two tetrahedra associated with basis function α, V ±α are their
volumes, Qα± are the source/sink vertices, and Aα is the area of the triangular
face shared by P±α . (I denote tetrahedra by P, which stands for “pyramid,” to
avoid confusion with the symbol T , which stands for “triangle” in my memos
on RWG basis functions.)

The divergence of the SWG basis function is

∇ · bα(x) = ±Aα
V ±α

, x ∈ P±α .
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5 SWG Matrix Elements of the G operator

5.1 Distant case: Volume-integral method

The G-matrix element between two SWG basis functions is〈
bα

∣∣∣G∣∣∣bβ〉 =

∫
supbα

dxα

∫
supbβ

dxβ bαi(xα)Gij(R0 + xα − xβ)bβj(xβ) (52)

where
xα ≡ xα − xα0, xβ ≡ xβ − xβ0, R0 = xα0 − xβ0

and xα0,xβ0 are the centroids of the basis functions.
When the two basis functions are well separated (i.e. |R0| � |xα|, |xβ |), we

may compute (53) to sufficient accuracy using a volume-integral method:〈
bα

∣∣∣G∣∣∣bβ〉 =
∑
±
∫
P±α

dxα

∫
P±β

dxβ

[
bα · bβ −

9

k2

]
Φ
(∣∣R0 +xα−xβ

∣∣) (53)

where Φ(r) = eik|r|

4π|r| . in which the 6-dimensional integration over each of the four

pairs of tetrahedra is carried out by simple low-order numerical cubature, as
discussed in Appendix D.

5.2 Nearby case: Desingularization

When the two basis functions have one or more common vertices, the integral
(53) is singular. In this case, buff-em follows the standard desingularization
strategy: the first few singular terms in the small-r expansion of Φ(r) are sub-
tracted off, leaving (a) a desingularized version of (53) which is evaluated by
low-order cubature, and (b) a collection of singular but frequency-independent
integrals.

All singular integrals computed by buff-em for an object described by a
given tetrahedral mesh are automatically stored in a binary data file named
Mesh.cache, (where Mesh.vmsh is the name of the file from which the mesh was
read). Te buff-em core library will automatically look for this file when it needs
singular integrals; if the file is not found, the singular integrals are computed on
the fly and automatically stored in the file Mesh.cache. (Thus, the caching of
singular integrals is more transparent to the user than is the case in scuff-em.)

5.3 Evaluation of singular integrals: Taylor-Duffy Method

Singular 6-dimensional integrals in buff-em are evaluated by a complicated
technique obtained by generalizing the Taylor-Duffy method for triangles to the
case of tetrahedra.
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A Dictionary of the operator–matrix correspon-
dence

Infinite-dimensional position-space basis ⇐⇒ NB-dimensional basis of discrete
expansion functions {bα(x)}.

Notation

• We use blackboard-bold symbols for position-space operators: G,T.

• We use upper-case bold letters for discrete-basis matrices: T,G,W. The
elements of these matrices are, e.g.

Gαβ ≡
∫ ∫

bα(r)G(r, r′)bβ(r′) dr dr′

• (At the risk of confusion with the previous item) We use upper-case bold
letters for position-space vectors: J(x),E(x).

• We use lower-case bold letters for discrete-basis vectors: j, e. The elements
of these vectors are e.g.

eα ≡
∫

bα(r) ·E(r)dr.

Continuous Discrete

G(r, r′) G matrix, with elements Uαβ =
∫ ∫

bα(r)G(r, r′)bβ(r′) dr dr′

E(r) e vector, with elements eα =
∫

bα(r) ·E(r) dr

Approximate completeness relation

One way to conceptualize the transition from the continuous to the discrete is to
suppose that the basis functions {bα(x)} satisfy an approximate completeness
relation of the form ∑

α

bαi(r)bαj(r
′) ≈ δijδ(r− r′) (54a)

or ∑
α

∫
bαi(r)bαj(r

′) dr′ = δij (54b)
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Convolutions becomes matrix-vector products

For example, consider the continuous version of the equation relating the total
current to the total field:

E = ikZ0G ? J (55)

or

Ei(r) = ikZ0

∫
Gij(r, r′)Jj(r′)dr′. (56)

Insert (54a) [in the form
∑
bβj(r

′)bβk(r′′) = δjkδ(r
′ − r′′)]between G and J on

the RHS:

Ei(r) = ikZ0

∑
β

[∫
Gij(r, r′)bβj(r′)dr′

] [∫
bβk(r′′)Jk(r′′)dr′′

]
︸ ︷︷ ︸

jβ

(57)

As it stands this equation exists in a sort of hybrid continuous-discrete form.
Now multiply both sides by bα(r) and integrate over r to find

eα = ikZ0Gαβjβ (58)

or

e = ikZ0G j. (59)

Volume integrals become dot products

Consider, for example, the integral〈
J ·E

〉
Bn
≡
∫
Bn

J∗(r) ·E(r) dr

Rewrite this in the seemingly pedantic form

=

∫
Bn

∫
Bn
J∗i (r)δijδ(r− r′)Ej(r

′) dr dr′

Now insert (54a):

=

∫
Bn

∫
Bn
J∗i (r)

[∑
α

bαi(r)bαj(r
′)

]
Ej(r

′) dr dr′

=
∑
α

[ ∫
Bn
bαi(r)J∗i (r) dr

]
︸ ︷︷ ︸

j∗nα

[ ∫
Bn
bαj(r

′)Ej(r
′) dr′

]
︸ ︷︷ ︸

enα

= j†nen. (60)
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B Derivation of volume integrals for the force
and torque

Consider a body in which exists both a (deterministic) total volume current
distribution J(x) and electric and magnetic fields {E,H}(x). The time-average
force experienced by the currents in an infinitesimal volume dV is

dF =
1

2
Re
[
ρ∗E + µ0J

∗ ×H
]
dV

Use ρ = 1
iω (∇ · J) and H = 1

iωµ0
∇×E:

=
1

2
Re

{
1

iω

[
− (∇ · J∗)E + J∗ × (∇×E)

]}
dV

or

dFi = − 1

2ω
Im
[
(∂jJ

∗
j )Ei − εijkεk`m︸ ︷︷ ︸

δi`δjm−δimδj`

J∗j ∂`Em

]
dV

= − 1

2ω
Im
[
(∂jJ

∗
j )Ei − J∗j ∂iEj + J∗j ∂jEi

]
dV. (61)

The total force is given by integrating over the volume:

Fi = − 1

2ω
Im

∫
Bn

[
(∂jJ

∗
j )Ei − J∗j ∂iEj + J∗j ∂jEi

]
dV (62)

The first and third terms here together read∫
∂j
(
J∗j Ei

)
dV =

∫
∇ · (Ei J∗) dV =

∮
EiJ

∗ · dA = 0 (63)

because J · n̂ = 0 at the surface of the object (no current flows from the body
into space). Thus only the middle term in (62) is nonvanishing, and we find
simply

Fi =
1

2ω
Im

∫
Bn
J∗j ∂iEj dV =

1

2ω
Im

∫
Bn

J∗ · ∂iE dV. (64)

Torque

The contribution of currents in dV to the torque about an origin r0 is given by

dT = (r− r0)× dF

or, in components,

dTi = εijk(r− r0)jdFk.
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Insert (61):

= − 1

2ω
Im
{
εijk(r− r0)j

[
(∂`J

∗
` )Ek − J∗` ∂kE` + J∗` ∂`Ek

]}
dV (65)

The volume integral of the second term reads

T (2)
i = +

1

2ω
Im

∫
J∗ · ∂θiE dV.

where the symbol ∂θiE denotes the derivative of E(r) with respect to an in-
finitesimal rotation of the point r about the ith coordinate axis with origin
r0.

The volume integral of the first+third terms in (65) is

T (1+3)
i = − 1

2ω
Im

∫
εijk(r− r0)j∂`

(
J∗`Ek

)
dV

= − 1

2ω
Im

∮
εijk(r− r0)jEk J · dA︸ ︷︷ ︸

=0

+
1

2ω
Im

∫
εijkδ`jJ

∗
`EkdV

= +
1

2ω
Im

∫
(J∗ ×E)i dV

where the surface integral in the second line vanishes by the argument of (63).
Adding the two contributions, I find

Ti =
1

2ω
Im

∫
Bn

[
J∗ · ∂θiE +

(
J∗ ×E

)
i

]
dV. (66)
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C From Rytov to Johnson-Nyquist

For those of us who learned about noise in resistors before learning about
Casimir forces and radiative heat transfer in nanoparticles, it’s useful to relate
the abstract and possibly mysterious notion of the Rytov correlation function
to the concrete and familiar concept of Johnson-Nyquist noise. (Even for those
who need no help with fluctuation-dissipation ideas, this exercise is useful for
pinning down factors of 2π and other normalization effluvia.)

Johnson-Nyquist Noise

In elementary circuit theory we are taught that, at temperature T , a resistor
exhibits a mean-square power of〈

P
〉

= 4kT∆f

(where ∆f is the effective measurement bandwidth in Hertz, usually determined
by low-pass and high-pass filters in the circuit). If the resistance of the resistor
is R, then the mean-square voltage across its terminals and the mean-square
current flowing through it are〈

V 2
〉

=
〈
P
〉
R = 4kTR∆f,〈

I2
〉

=
1

R

〈
P
〉

=
4kT

R
∆f (67)

We would now like to understand equation (67) on the basis of the Rytov cor-
relation function.

Macroscopic current noise from microscopic current-density
fluctuations

To this end, consider a resistor consisting of a homogeneous cylinder of length
L and cross-sectional area A with relative dielectric function

ε(ω) = ε′(ω) + iε′′(ω) = ε′(ω) + i
σ

ε0ω
(68)

where σ is the microscopic conductivity in units of mho·meters [one mho = 1
inverse ohm (1 Ω−1) = 1 siemen].6 The microscopic resistivity, with units of
ohms/meter, is ρ = 1/σ. The total resistance of the resistor is

R =
L

A
ρ =

L

Aσ
.

6The absolute permittivity of the object is ε0ε′ + i σ
ω

. To check that the imaginary part of

(68) is indeed dimensionless, note that ε0 = 1
Z0c

where Z0 ≈ 377 Ω is the impedance of free

space and c is the speed of light; thus the units of the imaginary part of (68) are[ σ

ε0ω

]
=

[mhos·meters]

[mhos·seconds·meters][seconds−1]
= dimensionless.
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We align the cylinder axis with the z-axis and break up coordinates into trans-
verse and longitudinal components according to x = (ρ, z).

The instantaneous current density at a point in the cylinder may be ex-
pressed as a Fourier synthesis:

J(x, t) =

∫
J(x, ω)e−iωt dω (69)

where J(x, ω) is the Fourier transform of the instantaneous current density
J(x, t):

J(x, ω) =
1

2π

∫
J(x, t)e+iωt dt. (70)

The instantaneous current passing through a cross-sectional plane at height z
is

I(z, t) =

∫
I(z, ω)e−iωt dω

where I(z, ω) is given by integrating J over the cross-sectional plane:

I(z, ω) =

∫
A

J(ρ, z, ω) · n̂ dρ

or, in our specific geometry in which the cross section is everywhere normal to
the z direction,

I(z, ω) =

∫
A

Jz(ρ, z, ω) dρ.

Over a time interval of length τ , the average of the product of I(t, z) and I(t, z′)
is〈
I(z)I(z′)

〉
=

1

τ

∫ τ

0

I(z, t)I(z′, t) dt

=
1

τ

∫ τ

0

dt

∫
dω

∫
dω′ I(z, ω)I(z, ω′)e−i(ω+ω′)t

=
1

τ

∫ τ

0

dt

∫
dω

∫
dω′

∫
A

dρ

∫
A

dρ′ Jz(ρ, z, ω)Jz(ρ
′, z′, ω′)e−i(ω+ω′)t.

(71)

To proceed we need to address a question about which we haven’t said anything
thus far—namely, where the current comes from. In a deterministic circuit
problem we would have some fixed, known, externally applied voltage V across
the resistor, which would induce a current equal to I = V/R. Here, on the
other hand, there is no external voltage, and instead the current arises from
thermal and quantum-mechanical fluctuations in the microscopic current den-
sity. Although we can’t track the instantaneous progress of these fluctuations



Homer Reid: buff-em 25

in time—and thus, for example, we can’t write down an expression for the
instantaneous current density J(x, t)—we can make precise statements about
certain statistical averages over these fluctuating quantities. One particularly
obvious statement is that the time-average value of any Cartesian component
of J vanishes, 〈

Ji(x, t)
〉

= 0 for any i.

A less obvious but even more important statement is that the fluctuation-
dissipation theorem allows us to make a very definite prediction about the time-
average value of the product of two cartesian components of J. This equation—
sometimes known as the Rytov correlation function—is easiest to write in the
frequency domain, where it takes the form〈

Ji(x, ω)Jj(x
′, ω′)

〉
= δ(ω + ω′)

〈
Ji(x), Jj(x

′)
〉
ω

(72)〈
Ji(x)Jk(x′)

〉
ω

=
2ωε0
π

Θ(ω, T )δ(r− r′)Im εij(r, ω) (73)

Equation (72) here is essentially the same7 as equation (122.4) in Landau and
Lifshitz (LL), Statistical Physics Volume 1. In equation (73), Θ(ω, T ) is the
Bose-Einstein statistical factor at the local temperature near r (about which we
will have more to say shortly) and εij(r, ω) is the (i, j) component of the relative
permittivity tensor of the material at point r and frequency ω. Inserting (72)
into (71) and using the δ functions to perform the ρ′ and ω′ integrations, we
have〈
I(z)I(z′)

〉
=

1

τ

∫ τ

0

dt

∫
dω

∫
dω′

∫
A

dρ

∫
A

dρ′
〈
Jz(ρ, z, ω)Jz(ρ

′, z′, ω′)
〉
e−i(ω+ω′)t

=
2ε0
πτ

δ(z − z′)
∫ τ

0

dt

∫
dω ωΘ(ω, T )

∫
A

dρ Im εzz(ρ, z, ω)

In the present case [cf. equation (68)] we have Im εij(r, ω) = δij
σ
ε0ω

(indepen-
dent of r), whereupon we find

=
2σ

π
· δ(z − z′) · 1

τ

∫ τ

0

dt

∫
dωΘ(ω, T )︸ ︷︷ ︸

kT∆ω

∫
A

dρ︸ ︷︷ ︸
A

Here I used the high-temperature limit Θ(ω, T ) ≈ kT (see below), Finally,

7My formula differs from that of Landau and Lifshitz (LL) by a factor of 2π, which arises
because of our different conventions for the Fourier analysis and synthesis of time-domain
functions: I like to put a factor of 1

2π
in Fourier-analysis equations like (70), and to omit this

factor in Fourier-synthesis equations like (69), while LL make the opposite choice.
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averaging over the length of the resistor yields

〈
I2(z)

〉
=

1

L

∫ L

0

〈
I(z)I(z′)

〉
dz′

=
2kT∆ω

π
· Aσ
L︸︷︷︸

1/R

=
4kT

R
∆f

where I used ∆ω = 2π∆f. This is equation (67).

Limiting behavior of Θ(ω, T )

The Bose-Einstein statistical factor Θ(ω, T ), which describes the average energy
contained in an electromagnetic8 mode of frequency ω, is

Θ(ω, t) = ~ω
[

1

e
~ω
kT − 1

+
1

2

]
=

~ω
2

coth

(
~ω

2kT

)
(74)

In the high- and low-temperature limits (equivalently, the low- and high-frequency)
limits, the statistical factor of equation (74) becomes

Θ(ω, t)
~ω
kT→0
−−−−→ kT, Θ(ω, t)

~ω
kT→∞−−−−−→ ~ω

2
. (75)

The first case here corresponds to classical equipartition of energy: we have
roughly kT worth of energy in each mode, independent of frequency. The sec-
ond case corresponds to quantum-mechanical zero-point energy; we have some
energy in each mode even at zero temperature.

To estimate the crossover between the high- and low-temperature regimes,
recall that room temperature (T=300 K) corresponds to an energy of kT ≈ 26
meV (milli-electron-volts), while ~ has the numerical value

~ ≈ 7 · 10−16eV · s = 7 · 10−16 eV

rad/s
.

Thus, for a circuit at frequency f = 1 GHz at a temperature of T=300 K, we
have

kT = 0.026 eV � ~ω =

(
7 · 10−16 eV

rad/s

)(
2π · 109rad/s

)
= 4 · 10−6 eV

and thus, for ordinary circuits at ordinary temperatures, we are well in the
high-temperature (low-frequency) regime in which Θ(ω, T ) ≈ kT .

8Or otherwise bosonic.
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D Volume integrals involving SWG basis func-
tions

Integrals over the support of SWG basis functions take the form∫
supbα

I(x,bα) dx =

∫
P+
α

I(x,bα) dx +

∫
P−α
I(x,bα) dx (76)

Consider a tetrahedron with vertices {Q,V1,V2,V3.} A general integral over
this region takes the form∫

P
I(x,b) dx = J

∫ 1

0

du

∫ 1−u

0

dv

∫ 1−u−v

0

dw I
(
x(u, v, w),b(u, v, w)

)

x(u, v, w) = Q + uL1 + vL2 + wL3

b(u, v, w) = ± A

3V

{
uL1 + vL2 + wL3

}
where

Li ≡ Vi −Qi

and the Jacobian of the transformation is

J =
d(x, y, z)

d(u, v, w)
= det

∣∣∣∣∣∣∣∣∣ L1 L2 L3

∣∣∣∣∣∣∣∣∣ = 6V

Overlap Matrix Elements

〈
bα

∣∣∣bβ〉 =
∑
±AαAβ

9V 2

∫
V

(
x−Qα

)
·
(
x−Qβ

)
dx

(where the sum is over the 0, 1, or 2 tetrahedra in the common support of
{bα,bβ})

=
∑
±2AαAβ

3V

∫ 1

0

du

∫ 1−u

0

dv

∫ 1−u−v

0

dw

{[
uL1α + vL2α + wL3α

]
·
[
uL1α + vL2α + wL3α + Qα −Qβ

]}
=
∑
±2AαAβ

3V

{
1

120

∣∣∣L1α + L2α + L3α

∣∣∣2 +
1

120

(
|L1α|2 + |L2α|2 + |L3α|2

)
+

1

24

(
L1α + L2α + L3α

)
· (Qα −Qβ)

}
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This can be simplified by noting that L1α + L2α + L3α = 3(X0α −Qα) where
X0α is the centroid of basis function bα:

=
∑
±2AαAβ

3V

[ 3

40
(X0α −Qα)2 +

1

120

(
|L1α|2 + |L2α|2 + |L3α|2

)
+

1

8
(X0α −Qα) · (Qα −Qβ)

]
.

Dipole and Quadrupole Moments

The dipole moment of the current distribution described by a single unit-
strength SWG basis function is

pα ≡
i

ω

∫
supbα

bα(x) dx︸ ︷︷ ︸
Jα(x)

(77)

The Cartesian components of J α(x) may be worked out in closed form:

Jαi(x) = 2A

∫ 1

0

du

∫ 1−u

0

dv

∫ 1−u−v

0

dw (u+ v + w)(Q− −Q+)i

=
A

4
(Q− −Q+)i. (78)

Similarly, the quadrupole moments are related to the quantity

Qαij(x) =

∫
supbα

bαi(x− x0)j dx

where x0 = 1
3 (V1 + V2 + V3) is the centroid of the basis function (which we

take to be the centroid of the triangle that constitutes the common face).

= 2A

∫ 1

0

du

∫ 1−u

0

dv

∫ 1−u−v

0

dw

{
[
uL+

1 + vL+
2 + wL3 +

]
i

[(
u− 1

3

)
L+

1 +

(
v − 1

3

)
L+

1 +

(
w − 1

3

)
L+

1

]
j

−
[
uL−1 + vL−2 + wL3 −

]
i

[(
u− 1

3

)
L−1 +

(
v − 1

3

)
L−2 +

(
w − 1

3

)
L−3

]
j

}
=
A

20

{
Q−i

[
Q− − x0

]
j
−Q+

i

[
Q+ − x0

]
j

+ x0i

[
Q+ − x0

]
j

}
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