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1 Overview

The core scuff-em library is designed to solve electromagnetism problems at
nonzero frequencies. In principle, we can use it to solve electrostatics problems
simply by working at low nonzero frequencies and extrapolating to the ω → 0
limit. This approach works adequately in many cases of interest (as, for example,
in the “electrostatics of a spherical dielectric shell” example on the scuff-em
website.1)

However, there are at least two drawbacks to such an approach:

• The nonzero-frequency BEM formulations used by libscuff are solving
for surface currents (both electric and magnetic currents), whereas for
electrostatics problems the appropriate unknowns are electric charges with
no magnetic unknowns. Because there are multiple current distributions
whose divergence yields the same charge density, the full-wave formula-
tions in libscuff become ill-conditioned in the extreme DC limit. Even
for low-but-not-extremely-low frequencies at which the full-wave formula-
tion is not particularly badly behaved, it is still computationally waste-
ful to solve for electric and magnetic currents when we only need electric
charges. Indeed, for a dielectric object represented by a surface mesh of N
triangular panels, the full-wave formulation of libscuff involves roughly
3N unknowns, whereas a pure-electrostatics formulation requires exactly
N unknowns, as discussed below.

• In electrostatics we frequently encounter boundary conditions consisting
of fixed potentials on conductor surfaces. This kind of boundary condition
is unwieldy to support in core libscuff (although the scuff-rf module
does support a version of it in the definition of port voltages).

To address these difficulties, scuff-em includes a pure electrostatics module
known as scuff-static. This code reuses much of the existing libscuff in-
frastructure to implement an electrostatic BEM formulation. It is designed to be
easily incorporated into existing scuff-em workflows; in particular, it reads the
same .scuffgeo files for describing geometries.2 The following section of this
memo describes the (standard) electrostatic BEM formulation used by scuff-
em, and subsequent sections discuss the implementation of the various types of
calculation you can request in a scuff-static run.

Implementation of λ-surfaces

In addition to the usual electrostatic boundary conditions for perfect conductors
and dielectrics, scuff-static supports an exotic type of boundary condition

1http://homerreid.com/scuff-EM/scuff-scatter/scuffScatterExamples.shtml#

SphericalShell.
2One distinction: scuff-static does not presently support LATTICE statements, i.e. ex-

tended objects with periodic boundary conditions.
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that I will call “λ-conditions,” which arises in theoretical treatments of entan-
glement entropy. At a point x on the surface of a body satisfying λ-conditions
(which I will call a “λ-surface”), the boundary condition on the electrostatic
potential is ∣∣∣∣dφdn̂

∣∣∣∣
x+

−
∣∣∣∣dφdn̂

∣∣∣∣
x−

=
1

λ
φ(x) (1)

where λ is a material property of the surface. [Noting that the LHS of (1) is
the jump in normal electric field across the two sides of a surface in vacuum,
it is tempting to interpret the RHS as a surface charge density, in which case
we can think of 1/λ as a sort of linear semiconducting susceptibility, i.e. the
surface develops a local charge density proportional to the local electrostatic
potential with proportionality constant 1/λ.] λ-surfaces are described in scuff-
em geometry files as infinitesimally thin objects whose dielectric constant has
zero real part and negative imaginary part; the absolute value of the imaginary
part is taken as the value of λ.
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2 Theory

As in the usual libscuff, we imagine geometries to consist of homogeneous
regions {Rr}. Homogeneous region {Rr} has relative dielectric permittivity εr.

The boundary of Rr is denoted ∂Rr; it may consist of a single closed surface
or a union of surfaces, each of which may be individually open. Thus we write

∂Rr = ∪Ss (2)

Each surface Ss bounds precisely two regions; thus Ss appears on the RHS of
equation (2) for two different values of r.

On each surface lives a surface charge density σ(x).
Surface Ss may optionally be PEC, in which case it must be assigned a

fixed potential Vs before the problem can be solved. Physically, a PEC surface
corresponds to an infinitesimally thin conducting layer at the interface between
two dielectric regions, and the surface charge on such a surface represents free
charges supplied to the surface by whatever batteries initially charged them up
to their specified potentials Vs.

On the other hand, a non-PEC surface simply desribes the interface between
two dielectric regions, and the surface charge on such a surface represents the
divergence of the bound volume polarization density in the dielectric region.
Among other things, this means that the total surface charge integrated over
the boundary of a dielectric region must vanish. There is no such constraint on
the total surface charge on PEC surfaces.

Potentials and fields from charge densities: continuous forms

The electrostatic potential and field at an arbitrary point x are obtained by sum-
ming contributions from surface charges on all surfaces, plus the contributions
of any external field sources that may be present:

φ(x) = φext(x) +
1

4πε0

∑
s

∮
Ss

1

|x− x′|
σ(x′) dx′ (3a)

E(x) = Eext(x) +
1

4πε0

∑
s

∮
Ss

(x− x′)

|x− x′|3
σ(x′) dx′. (3b)

where φext,Eext are the potential and field due to external field sources.3

There are several important distinctions between these equations and the
corresponding equations in the full-wave formulations:

• The integrals in (3) are over all surfaces in the problem, not just the
surfaces bounding the region in which the evaluation point lies. This is in
contrast to the full-wave case, in which the corresponding surface integrals
range only over the surfaces bounding the medium in question.

3In a full-wave scattering problem these would be the “incident” fields, but in an electro-
static problem the word “incident” doesn’t quite make sense, so we call them the “external”
fields instead.
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• Similarly, φext,Eext contribute to the total fields at all points in space, not
just points living in the same regions as the external field sources. This
is again in contrast to the full-wave case, where the incident field sources
contribute only to fields at points in the same region as those sources.

• Equations (3) do not involve the dielectric constants of the various regions.
Instead, surface charges on all surfaces contribute to the potential as they
would in vacuum. The dielectric constants of the various materials enter
only through the boundary conditions, discussed below.

• Another distinction with the full-wave case which is not apparent from (3)
is that we can have nonzero induced charge densities σ even in the absence
of any external fields. This is possible if the problem involves conducting
surfaces maintained at nonzero potentials.

Surface charge density expansion

Now imagine approximating surface Ss as the union of NP
s flat triangular panels,

Ss = ∪Psa
where a = 1, · · · , NP

s . Let Psa have area Asa and surface normal n̂sa. (We will
worry about the direction of n̂sa later.)

To panel Psa we assign a scalar-valued “pulse” basis function bsa(x) that is
1 on the panel and 0 elsewhere:

bsa(x) =

{
1, x ∈ Psa
0, otherwise.

We approximate the surface charge density on Ss as an expansion in the bsa
functions:

σ(x)

ε0
≈

NP
s∑

a=1

σsabsa(x) for x ∈ Ss.

Note that my σsa unknowns have the dimensions of

surface charge density

permittivity
=

volts

length
.

In what follows, I will frequently use the collective subscript n = (sa) with∑
n =

∑
s

∑
a, i.e. a sum over n runs over all panels on all surfaces.

Potentials and fields from charge densities: discretized forms

The electrostatic potential and field at x are

φ(x) = φextr (x) +
∑
n

σn

∫
Pn

dx′

4π|x− x′|
(4a)

E(x) = Eext
r (x) +

∑
n

σn

∫
Pn

(x− x′)dx′

4π|x− x′|3
(4b)
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where the sum is over all panels on all surfaces in the problem.

Conditions on potentials and fields

Conditions at PEC surfaces

At PEC surfaces we impose the condition that the electrostatic potential equal
the specified potential for that conductor:

φ(x) = Vs, for x ∈ Ss.

Galerkin-testing with the expansion functions for surface Ss, we find∫
Psa

φ(x)dx = AsaVs, for all panels Psa on surface Ss.

Inserting (4a), this reads∑
n

I(1)

mnσn = AmVm −
∫
Pm

φext(x)dx (5)

where Vm is the potential at which the conducting surface containing panel Pm
is held and

I(1)

mn ≡
∫
Pm

∫
Pn

1

4π|x− x′|
dx′ dx.

Conditions at dielectric surfaces

At non-PEC surfaces we impose the condition that the normal electric field
exhibit the requisite discontinuity. If x is a point on a surface Ss lying between
regions Rr and Rr′ , the condition is

εr

∣∣∣∣∂φ∂n̂

∣∣∣∣
x+

= εr′

∣∣∣∣∂φ∂n̂

∣∣∣∣
x−

(6)

where n̂ is the surface normal pointing away from Rr into Rr′ , and where x+

and x− are points lying infinitesimally displaced from x along n̂ into Rr and
Rr′ .

When we seek to enforce condition (6) at a point x lying within a panel Psa
on Ss, we find the following dichotomy:

1. Surface charges on Psa contribute to the two sides of (6) with opposite
signs.

2. Surface charges on all other panels, as well as the external field sources,
contribute to the two sides of (6) with the same sign.
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Equation (6) thus reads, for a point x on Pm,

εr

σm
2

+
∑
n 6=m

σn

∫
Pn

n̂m · (x− x′)

4π|x− x′|3
dx′ + n̂m ·Eext(x)


= εr′

−σm
2

+
∑
n 6=m

σn

∫
Pn

n̂m · (x− x′)

4π|x− x′|3
dx′ + n̂m ·Eext(x)


or

σm + ∆rr′

∑
n 6=m

σn

∫
Pn

n̂m · (x− x′)

4π|x− x′|3
dx′ = −∆rr′ n̂m ·Eext(x) (7)

with

∆rr′ = 2
εr − ε′r
εr + ε′r

. (8)

Now Galerkin-test (7) with the pulse basis function associated with panel m:

Amσm + ∆rr′

∑
n 6=m

I(2)mnσn = −∆rr′

∫
Pm

n̂m ·Eext(x)dx (9)

where

I(2)

mn ≡
∫
Pm

∫
Pn

n̂m · (x− x′)

4π|x− x′|3
dx′ dx.

Conditions at λ− surfaces

As a generalization of the usual electrostatics for PEC and dielectric bodies,
scuff-static also supports a modified type of boundary conditions that we
will call λ-conditions. The λ boundary condition is defined by

λ

{ ∣∣∣∣dφdn̂
∣∣∣∣
x+

−
∣∣∣∣dφdn̂

∣∣∣∣
x−

}
= φ(x). (10)

Surfaces satisfying λ conditions will be known as λ-surfaces. We may think of
λ-surfaces as a type of semiconducting surface on which reside a surface charge
density proportional to the local electrostatic potential.

It’s easy to write down the Galerkin-tested version of (10). Consider test-
ing each side with the pulse basis function associated with panel m. By the
dichotomy discussed above, the contribution of all other panels Pn 6=m to the
quantity in curly brackets vanishes, as does the contribution of the external
field. The contribution of Pm may be evaluated in a way similar to our evalua-
tion of the diagonal matrix element in the dielectric case discussed above. The
Galerkin test of the RHS proceeds similarly to our discussion of the PEC case
above. We obtain

λAmσm −
∑
mn

I(1)mnσn =

∫
Pm

φext(x) dx.
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BEM system

Assembling equations (5) for PEC panels, (9) for all dielectric panels, and (10)
for all λ panels into a big linear system, we have

Mσ = v (11)

where the mth entry of the unknown vector σ is the surface charge density
(divided by ε0) on the mth panel, and where the elements of the BEM matrix
and the RHS vector are

If panel m is on a PEC surface:

Mmn = I(1)mn, vm = AmVm −
∫
Pm

φext(x) dx.

If panel m is on a dielectric surface:

Mmn =

{
Am, m = n

∆rr′I(2)mn, m 6= n
vm = −∆rr′

∫
Pm

n̂m ·Eext(x) dx.

If panel m is on a λ-surface:

Mmn = λAmδmn − I(1)mn, vm = +

∫
Pm

φext(x) dx.

In these equations,

• Vm denotes the potential at which the conducting surface containing panel
Pm is held.

• ∆rr′ is quantity (8) with εr and εr′ the permittivities of the regions exterior
and interior to the surface containing Pm, respectively.
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3 Output Modules

In this section we discuss the implementation of some of the scuff-static
output modules.

3.1 Capacitance matrix

Consider a geometry consisting of N conducting bodies (possibly in the presence
of any number of additional dielectric bodies). The capacitance matrix is an
N ×N matrix whose m,n entry Cmn gives the charge induced on body m when
conductor n is maintained at a potential of 1 volt and all other conductors are
maintained at zero volts. This is computed in scuff-static by performing N
separate electrostatic calculations—that is, solving equation (11) for N separate
RHS vectors but the same matrix in each case—with the nth RHS vector vn
corresponding to the case in which the conductor potentials are

Vm = (1 volt) · δmn, m = {1, · · · , N}.

After solving the system for σ, we compute the total induced charge on body
m by simply summing the charges of all panels on that body:

Cmn = ε0 ·
∑

p∈panels on Sm

Apσp

where Ap is the panel area.

3.2 Polarizability

The polarizability tensor α measures the dipole moment induced on a body by
a spatially-constant external electrostatic field. More specifically, the cartesian
components of the dipole moment are related to the cartesian components of
the external electric field by

pi = αijEj .

The polarizability is computed in scuff-static by solving three separate elec-
trostatics problems—involving constant unit-strength E fields pointing in each
of the three cartesian directions—and computing the resulting dipole moments.
Dipole moments p are computed by summing the charge on each panel times
the centroid of the panel:

p =
∑
p

Apσpxp.

3.3 C-matrix

The “C-matrix” (not to be confused with the capacitance matrix) is a sort of
DC version of the “T-matrix” familiar from full-wave electromagnetic scattering
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theory.4 The rows and columns of the C-matrix are indexed by spherical har-
monic indices (`m). In brief, the matrix entry C`′m′,`m is the coefficient of the
(`′m′) spherical multipole term in the “scattered” or “outgoing” electrostatic
potential due to an object exposed to an “incoming” (`,m)−spherical multipole
field.

Real-valued spherical harmonics

scuff-static works in a basis of real-valued spherical harmonics Y`m. These
are defined in terms of the usual complex-valued spherical harmonics Y`m by
simply replacing the eimφ factor in Y with a cosmφ factor for positive m and a
sinmφ factor for negative m (and then adjusting the overall normalization such
that the new functions are orthonormal). More specifically, we put

Y`,m ≡


1√
2

[
Y`,m + (−1)mY`,−m

]
, m > 0

Y`,m m = 0
1
i
√
2

[
Y`,m − (−1)mY`,−m

]
, m < 0.

(12)

The Y functions satisfy the orthogonality relation∫
Y`m(θ, φ)Y`′m′(θ, φ) dΩ = δ`,`′δm,m′

It is convenient to introduce a single index α that runs over (`,m) tuples ac-
cording to

α(`,m) = `(`+ 1) +m.

4Recall that scuff-em includes a code for computing full-wave T-matrices for objects of
arbitrary shapes and materials:http://homerreid.com/scuff-EM/scuff-tmatrix.
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The following table lists the α indices and Y functions for the first few (`,m)
tuples:

α (`,m) Y`m

0 (0, 0) +
√

1
4π

1 (1,−1) −
√

3
4π sin θ sinφ

2 (1, 0) +
√

3
4π cos θ

3 (1,+1) −
√

3
4π sin θ cosφ

4 (2,−2) −
√

15
16π sin2 θ sin 2φ

5 (2,−1) −
√

15
16π cos θ sin θ sinφ

6 (2, 0) +
√

5
16π (1 + 3 cos 2θ)

7 (2,+1) −
√

15
16π cos θ sin θ cosφ

8 (2,+2) +
√

15
16π sin2 θ cos 2φ

Definition of C-matrix

The entries of the C-matrix are defined as the coefficients in a spherical-wave
expansion of the “outgoing” or “scattered” potential due to a given “incident”
or “external” spherical-wave potential. More generally, we consider an object
subject to a given external potential φext(x). The total potential is the sum of
the external potential plus a “scattered” contribution arising from the induced
charge density on the object:

φ(x) = φext(x) + φscat(x). (13)

To define the C-matrix, we take the external potential to be a unit-strength
“incoming” (`,m) spherical wave:

φext(x) = r`Y`m(θ, φ). (14)

Then the “scattered” potential can quite generally be represented as a sum
of “outgoing” spherical waves, and the coefficients in this expansion are the
elements of the C-matrix:

φscat(x) =
∑
`′,m′

C`′m′,`m
Y`′m′(θ, φ)

r`′+1
. (15)
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C-matrix elements from charge-density projections

The elements of the C-matrix may be computed from the induced surface charge
density σ(x) on the surfaces of the objects in a scattering problem. To do so,
first note that the “scattered” potential may be obtained from σ in the form of
a surface integral:

φscat(x) =

∫
G(x− x′)σ(x′)dx′ (16)

where G(r) = 1
4π|r| is the usual electrostatic Green’s function. Now insert the

spherical-wave expansion of G:

=

∫ {∑
l′m′

1

(2l′ + 1)

(r′)`
′

r`′+1
Y`′m′(θ, φ)Y`′m′(θ′, φ′)

}
σ(x′)dx′ (17)

=
∑
l′m′

[
1

(2l′ + 1)

∫
(r′)`

′
Y`′m′(θ′, φ′)σ(x′)dx′︸ ︷︷ ︸

=C`′m′,`m

]
Y`′m′(θ, φ)

r`′+1
. (18)

Comparing to (15), we have the relation between the C-matrix coefficients and
the charge density induced by the incoming (`,m)−wave potential:

C`′m′,`m =
1

(2l′ + 1)

∫
(r′)`

′
Y`′m′(θ′, φ′)σ(x′)dx′. (19)

Computation of C-matrix in scuff-static

The computation of the C-matrix now proceeds in analogy to the capacitance
calculation outlined above:

1. We solve the BEM electrostatics problem (11) with the RHS vector cor-
responding to an (`,m) external field:

φext(x) = r`Y`m(θ, φ). (20)

2. Then, for each (`′,m′), we compute the (`′,m′) spherical-multipole mo-
ment of the induced charge distribution:

C`′m′,`m =
1

2l′ + 1

∮
dx r`

′
Y`′m′(x̂)σ(x)

where the surface integral ranges over all surfaces in the problem. We
evaluate the integral approximately via a one-point cubature that pretends
the integrand is constant over the surface of each panel and equal to its
value at the panel centroid:

≈
∑
p

Apσp|xp|`
′
Y`′m′(x̂p)

where the sum is over all panels on all object surfaces and xp is the centroid
of panel Pp.
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(Note that the C-matrix computed is the C-matrix for the entire geometry
including all objects).

Comparison to the usual C-matrix

How do the elements of our C-matrix, defined in terms of real-valued spherical
harmonics, compare with the usual definition in terms of the usual complex-
valued spherical harmonics? (We will use the notation C`′m′,`m to indicate the
matrix elements as defined by this usual definition.) In the usual definition, we
take the “incident” field to be

φext(x) = r`Y`m(θ, φ) (21)

and then define the C-matrix entries according to

φscat(x) =
∑
`′,m′

C`′m′,`m
Y`′m′(θ, φ)

r`′+1
. (22)

Here we are using the symbol C for the entries of the C-matrix.
To obtain the relation between the C and C matrices, consider an external

field consisting of a superposition of incoming real-valued spherical waves:

φext =
∑
`,m

a`,mr
`Y`,m(θ, φ) (23)

and write the external field as a superposition of outgoing real-valued spherical
waves:

φscat =
∑
`,m

b`,m
Y`,m(θ, φ)

r`+1
. (24)

Then the a`,m and b`,m coefficients are related according to

b = Ca (25)

where a,b are vectors of a and b coefficients and C is the C-matrix as defined
above with real-valued spherical harmonics.

On the other hand, we could just as easily have expressed the same external
and scattered fields in terms of complex-valued spherical harmonics,

φext =
∑
`,m

a`,mr
`Y`,m(θ, φ), φscat =

∑
`,m

b`,m
Y`,m(θ, φ)

r`+1
(26)

in which case the vectors of b and a coefficients would be related by the conventionally-
defined C-matrix,

b = Ca. (27)
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Finally, the a and b coefficients may be related to the a and b coefficients using
the definition (12), which reads

Γa = a, Γb = b

where the elements of the Γ matrix are

Γ`m,`′m′ =


δ``′√

2

[
δm,m′ + (−1)mδm,−m′

]
, m′ > 0

δ``′δm0, m′ = 0

δ``′

i
√
2

[
δm,m′ − (−1)mδm,−m′

]
, m′ < 0.

(28)

(Note that Γ is unitary, Γ† = Γ−1.) Using these equations, I can rewrite (25)
in the form

Γ†b = CΓ†a

or

b = ΓCΓ†a. (29)

Comparing (29) to (27) yields the transformation matrix from the real-valued
spherical-wave C matrix to the conventionally-normalized C-matrix:

C = ΓCΓ†. (30)


