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Figure 1: Geometry of the layered substrate. The nth layer has relative permit-
tivity and permeability εn, µn, and its lower surface lies at z = zn. The ground
plane, if present, lies at z = zGP.

1 Overview

In a previous memo1 I considered scuff-static electrostatics calculations in
the presence of a multilayered dielectric substrate. In this memo I extend that
discussion to the case of full-wave (i.e. nonzero frequencies beyond the qua-
sistatic regime) scattering calculations in the scuff-em core library.

Substrate geometry

As shown in Figure 1, I consider a multilayered substrate consisting of N ma-
terial layers possibly terminated by a perfectly-conducting ground plane. The
uppermost layer (layer 1) is the infinite half-space above the substrate. The nth
layer has relative permittivity and permeability εn, µn, and its lower surface lies
at z = zn. The ground plane, if present, lies at z ≡ zN ≡ zGP. If the ground
plane is absent, layer N is an infinite half-space.2

Definition of the substrate DGF

I will use the symbol Γ(ω; xD,xS) for the total 6×6 dyadic Green’s function
relating time-harmonic fields at xD to sources at xS: thus, if S ≡

(
J
M

)
is the

6-vector distribution of free electric and magnetic currents in the presence of
the substrate, then the 6-vector of electric and magnetic fields F ≡

(
E
H

)
is given

by

F(xD) =

∫
Γ(xD,xS) · S(xS)dxS.

1“Implicit handling of multilayered dielectric substrates in scuff-static”
2As in the electrostatic case, this means that a finite-thickness substrate consisting of N

material layers is described as a stack of N + 1 layers in which the bottommost layer is an
infinite half-space (zN+1 = −∞) with the material properties of vacuum (εN+1 = µN+1 = 1).
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The 6× 6 tensor Γ has a 2× 2 block structure:

Γ =

(
ΓEE ΓEM

ΓME ΓMM

)
(1a)

with the 3× 3 subblocks defined by

ΓPQ

ij (ω,xD,xS) =

(
i-component of P-type field at xD due to j-directed
Q-type point current source at xS, all fields and
sources having time dependence ∼ e−iωt

)
(1b)

Homogeneous DGF In an infinite homogeneous medium with relative per-
mittivity and permeability {εr, µr}, Γ reduces to its homogeneous form, for
which I will use the symbol Γ0r (where the r index labels the medium, which
in this case will be one of the layers in Figure 1, i.e. r ∈ {1, 2, · · · , N}):

xD,xS ∈ infinite homogeneous medium r =⇒ Γ(ω; xD,xS) = Γ0r(ω; xD−xS)

where3

Γ0r(ω, r) ≡

(
ikrZ0Z

rG(kr, r) ikrC(kr, r)

−ikrC(kr, r) ikr
Z0Zr

G(kr, r)

)
(2)

kr ≡
√
ε0εrµ0µr · ω, Z0Z

r ≡
√
µ0µr

ε0εr
,

Gij =

(
δij −

1

k2
∂i∂j

)
eik|r|

4π|r|
, Cij =

εi`m
ik

∂`Gmj

Inhomogeneous DGF On the other hand, in the presence of the multilayered
substrate the full DGF Γ receives corrections, which may be thought of as the
fields radiated by surface currents induced on the interfacial surfaces of the
substrate, and which I will denote by the symbol G:

Γ(xD,xS) = G(xD,xS) +

{
Γ0r(xD − xS), xS ∈ layer r

0, otherwise
(3)

Like Γ, G is a 6× 6 matrix with a 2× 2 block structure:

G(ω; xD,xS) =

(
GEE GEM

GME GMM

)
(4)

with the 3× 3 subblocks defined by

GPQ

ij =

(
i-component of P-type field at xD due to surface currents on sub-
strate interface layers induced by j-directed Q-type source at xS.

)
libsubstrate is a code for numerical computation of G.

3Cf. Section 3 of the companion memo “libscuff implementation and Technical Details,”
http://homerreid.github.io/scuff-em-documentation/tex/lsInnards.pdf
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Organization of scuff-em implementation and this memo

The full-wave substrate implementation in scuff-em consists of multiple work-
ing parts that fit together in a somewhat modular fashion.

Roughly speaking, the computational problem may be divided into two parts:

(a) For given source and evaluation (or “destination”) points {xS,xD} at a
given angular frequency ω in the presence of a multilayer substrate, nu-
merically compute the substrate DGF correction G(ω,xD,xS). This task
is independent of scuff-em and is implemented by a standalone library
called libsubstrate, described in Section 2 of this memo.

(b) For a scuff-em geometry in the presence of a substrate, compute the
substrate corrections to the BEM system matrix M and RHS vector v,
as well as the substrate corrections to post-processing quantities such as
scattered fields. This is done by the file Substrate.cc in libscuff and
is described in Section 3 of this memo.
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2 libsubstrate: Numerical computation of sub-
strate Green’s functions

Numerical evaluation of substrate contributions to dyadic Green’s functions is
handled by a C++ library called libsubstrate. Although this library is pack-
aged and distributed with scuff-em and depends on other support libraries in
the scuff-em distribution, it is independent of the particular integral-equation
formulation implemented by libscuff, and thus should be of general utility
beyond scuff-em.

2.1 Overview of computational strategy

libsubstrate decomposes the problem of computing G into several logical
steps, as follows:

1. Solve a linear system to obtain the Fourier-space representation G̃(q). Here
q = (qx, qy) is a 2D Fourier variable. (Section 2.2.)

2. Reduce the two-dimensional integral over q to a one-dimensional integral
over |q| ≡ q. (Section 2.3.)

3. Evaluate the q integral using established methods for evaluating Sommerfeld
integrals. (Section ??.)
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Figure 2: Effective surface-current approach to treatment of multilayer sub-
strate. External field sources induce a distribution of electric and magnetic
surface currents Sn =

(
Kn

Nn

)
on the nth material interface, and the fields radi-

ated by these effective currents account for the disturbance presented by the
substrate.

2.2 Computation of Fourier-space DGF G̃(q)
To compute the substrate correction to the fields of external sources, I consider
the effective tangential electric and magnetic surface currents K and N induced
on the interfacial layers by the external field sources (Figure 2). This is the direct
extension to full-wave problems of the formalism I used in the electrostatic case,
and it comports well with the spirit of surface-integral-equation methods.

More specifically, on the material interface layer at z = zn I have a four-
vector surface-current density Sn(ρ), where ρ = (x, y) and the components of
S are

Sn(ρ) =


Kx(ρ)
Ky(ρ)
Nx(ρ)
Ny(ρ)

 . (5)

Fields in layer interiors. I will adopt the convention that the lower (upper)
bounding surface for each region is the positive (negative) bounding surface for
that region in the usual sense of scuff-em regions and surfaces (in which the
sign of a {surface,region} pair {S,R} is the sign with which surface currents on
S contribute to fields in R). Thus, at a point x = (ρ, z) in the interior of layer

n (zn−1 > z > zn), the six-vector of total fields F =
(

E
H

)
reads

Fn(ρ, z) = −Γ0n(zn−1) ? Sn−1 + Γ0n(zn) ? Sn + Fext
n (ρ, z) (6)

where Fext
n are the externally-sourced (incident) fields due to sources in layer

n, Γ0n is the 6 × 6 homogeneous dyadic Green’s function for material layer n,
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and ? is shorthand for the convolution operation

“F(ρ, z) ≡ Γ(z′) ? S ′′ =⇒ F(ρ, z) =

∫
Γ(ρ− ρ′, z − z′) · S(ρ′)dρ′ (7)

where the integral extends over the entire interfacial plane. I will evaluate
convolutions of this form using the 2D Fourier representation of Γ0n:

Γ0n(ρ, z) =

∫
d2q

(2π)2
Γ̃0n(q, z)eiq·ρ (8a)

Γ̃0n(q, z) =
1

2

(
−ωµ0µn

qzn
G̃± +C̃±

−C̃± −ωε0εnqzn
G̃±

)
eiqz|z| (8b)

G̃±(q, k) =

 1 0 0

0 1 0

0 0 1

− 1

k2

 q2x qxqy ±qxqz
qyqx q2y ±qyqz
±qzqx ±qzqy q2z

 (8c)

C̃±(q, k) =

 0 ∓1 +qy/qz

±1 0 −qx/qz
−qy/qz +qx/qz 0

 (8d)

kn ≡
√
ε0εnµ0µn · ω, qz ≡

√
k2 − |q|2, ± = sign z. (8e)

With this representation, convolutions like (7) become products in Fourier space:

Γ(z′) ? S = F(ρ, z) =

∫
d2q

(2π)2
F̃(q, z)eiq·ρ, with F̃(q, z) = Γ̃(q, z − z′)S̃(q)

Surface currents from incident fields. To determine the surface currents
induced by given incident-field sources, I apply boundary conditions. The
boundary condition at z = zn is that the tangential E,H fields be continu-
ous: in Fourier space, we have

F̃‖(q, z = z+n ) = F̃‖(q, z = z−n ) (9)

The fields just above the interface (z → z+n ) receive contributions from three
sources:

• Surface currents at z = zn−1, which contribute with a minus sign and via
the Green’s function for region n;

• Surface currents at z = zn, which contribute with a plus sign and via the
Green’s function for region n; and

• external field sources in region n.
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The fields just below the interface (z = z−n ) receive contributions from three
sources:

• Surface currents at z = zn, which contribute with a minus sign and via
the Green’s function for region n+ 1;

• Surface currents at z = zn+1, which contribute with a plus sign and via
the Green’s function for region n+ 1; and

• external field sources in region n+ 1.

Then equation (9) reads (temporarily omitting q arguments)

− Γ̃0n
‖(zn − zn−1) · S̃n−1 + Γ̃0n

‖(0
+) · S̃n + F̃

ext

n‖ (zn)

= −Γ̃0,n+1‖(0−) · S̃n + Γ̃0,n+1‖(zn − zn+1) · S̃n+1 + F̃
ext

n+1‖(zn)

or

Mn,n−1 · S̃n−1 + Mn,n · S̃n + Mn,n+1 · S̃n+1 = F̃
ext

n+1‖(zn)− F̃
ext

n‖ (zn) (10)

with the 4× 4 matrix blocks4

Mn,n−1 = −Γ̃0n
‖(zn − zn−1) (13a)

Mn,n = +Γ̃0n
‖(0

+) + Γ̃0,n+1
‖(0
−) (13b)

Mn,n+1 = −Γ̃0,n+1
‖(zn − zn+1) (13c)

Writing down equation (10) equation for all N dielectric interfaces yields a
4N×4N system of linear equations, with triadiagonal 4×4 block form, relating
the surface currents on all layers to the external fields due to sources in all
regions:

M · s = f (14)

4The 4× 4 M blocks here have 2× 2 block structure:

Mn,n =
∑

r∈{n,n+1}

1

2

(
− ωεr
Z0qzr

g(kr,q) 0

0 −ωµrZ0
qzr

g(kr,q)

)
(11)

Mn,n±1 =
1

2

(
− ωεr
Z0qzr

g(kr,q) c±

−c± −ωµrZ0
qzn∗

g(kr,q)

)
eiqzr|zn−zn±1| (12)

where I put r ≡
{
n, for Mn,n−1

n+ 1, for Mn,n+1
. and

g(k; q) = 1−
qq>

k2
, c± =

(
0 ∓1
±1 0

)
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where M is the 4N×4N block-tridiagonal matrix (13) and where the 4N -vectors
s, f read

s =


S̃1

S̃2

S̃3

...

S̃N

 , f =


−F̃1‖(z1) + F̃2‖(z1)

−F̃2‖(z2) + F̃3‖(z2)

−F̃3‖(z3) + F̃3‖(z4)
...

−F̃N−1,‖(zN−1) + F̃N‖(zN−1)

 .

Solving (14) yields the induced surface currents on all layers in terms of the
incident fields:

s = W · f where W ≡M−1

or, more explicitly,

S̃n =
∑
m

Wnmfm (15)

Surface currents induced by point sources

For DGF computations the incident fields arise from a single point source—say,
a j-directed source in region s. Then the only nonzero length-4 blocks of the
RHS vector in (14) are fs−1, fS with components (` = {1, 2, 4, 5})(

fs−1

)
`

= −Γ̃0s
`j (zs−1 − zS),

(
fs

)
`

= +Γ̃0s
`j (zS − zS) (16)

and the surface currents on interface layer n are obtained by solving (15):

S̃n = Wn,s−1 fs−1 + Wn,s fs

=

1∑
p=0

(−1)p+1Wn,s−1+p · Γ̃0s
‖,j(zS − zs−1+p) (17)

Fields due to surface currents

Given the surface currents induced by a j-directed point source at xS, I evaluate
the fields due to these currents to get the substrate DGF contribution G. If the
evaluation point xD lies in region d, then the fields receive contributions from
the surface currents at zd−1 and zD, propagated by the homogeneous DGF for
region d:

F̃(zD) = −Γ̃0d(zD − zd−1) · S̃d−1 + Γ̃0d(zD − zD) · S̃d

=

1∑
q=0

(−1)q+1Γ̃0d(zD − zd+q−1) · S̃d+q−1 (18)
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(The minus sign in the first term arises because, in my convention, surface
currents on the upper surface of a region contribute to the fields in that region
with a minus sign). Inserting (17), the i component here—which is the ij
component of the substrate DGF—is

G̃ij(zD, zS) =

1∑
p,q=0

(−1)p+qΓ̃0d
i,‖(zD − zd−1+q)Wd−1+q,s−1+pΓ̃

0s
‖,j(zs−1+p − zS).

(19)

The calculation of equation (19) is carried out by the routine GetGTwiddle in
libsubstrate.

Green’s functions for potentials

In equation (18) I am computing the 6 components of the E and H fields
produced by the induced surface currents. If instead I compute the potentials
produced by those currents I obtain a slightly different Green’s function. Thus,
let AE,ΦE be the usual vector and scalar potential of an electric-current source
in a homogeneous region, and let AM,ΦM be their counterparts for magnetic-
current sources, i.e. if the electric and magnetic volume currents are J and M
then

AE(xD) = µ

∫
J(xS)G0(xDS) dxS, ΦE(xD) =

1

iωε

∫
(∇ · J)G0(xDS)dxS

(20a)

AM(xD) = ε

∫
M(xS)G0(xDS) dxS, ΦM(xD) =

1

iωµ

∫
(∇ ·M)G0(xDS)dxS

(20b)

with xDS ≡ xD − xS and

G0(k; r) =
eik|r|

4π|r|
=

∫
d2q

(2π)2
G̃0(q, z)eiq·ρ, G̃0 =

i

2qz
eiqz|z|.

I write
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2.3 Reduction of 2D Fourier integrals to 1D (Sommerfeld)
integrals

The real-space DGF correction is the inverse Fourier transform of (19):

G(ρ, zD, zS) =

∫
d2q

(2π)2
G̃(q; zD; zS)eiq·ρ

or, in polar coordinates with (qx, qy) = (q cos θq, q sin θq), (ρx, ρy) = (ρ cos θρ, ρ sin θρ),

G(ρ) =

∫ ∞
0

q dq

2π

∫ 2π

0

dθq
2π

G̃(q)eiqρ cos(θq−θρ). (21)

(Here and for much of this section I suppress zD,S arguments, but one must
remember that they are always there.5) The goal of this section is to integrate
out the angular variable θq to reduce the 2D integral over q to a 1D integral
over q = |q|. In abbreviated form this proceeds as follows:

1. Separate variables by writing G̃(q) as a sum of products of θq-independent
scalar functions g̃(q) times q−independent matrix-valued functions Λ(θq)
(Section 2.3.1):

G̃(q) =

18∑
n=1

g̃(n)(q)Λ(n)(θq)

2. Evaluate integrals over θq analytically to yield Bessel functions Jν(qρ)
multiplying q-independent matrix-valued functions Λ(θρ) (Section 2.3.2).
After this step (21) reads

G(ρ) =

22∑
m=1

[∫ ∞
0

g̃(m)(q, ρ) dq

]
︸ ︷︷ ︸

g(m)(ρ)

Λ(m)(θρ) (22)

where the g̃(q, ρ) functions are linear combinations of the g̃(q) functions
times Bessel functions in qρ and other factors.

3. Evaluate the remaining integrals over q numerically using sophisticated
tricks for evaluating Sommereld integrals (Section 2.3.3).

2.3.1 Factor G̃ into q-independent and θq-independent terms

I begin by noting that G̃(q) may be decomposed as a sum of scalar functions of
q = |q| times q-independent matrix-valued functions of θq :

G̃(q) =

18∑
n=1

g̃(n)(q)Λ(n)(θq) (23)

5More specifically, the “g-like” quantities G(ρ), G̃(q), g̃(q), g̃(q, ρ), and g(ρ) all depend on
zS,D, but the matrix-valued functions Λn(θ) do not.
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For example, the upper two quadrants read

G̃EE(q) =g̃EE0‖(q)

 1 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

Λ0‖

+g̃EE0z(q)

 0 0 0
0 0 0
0 0 1


︸ ︷︷ ︸

Λ0z

+g̃EE1(q)

 0 0 cos θq
0 0 sin θq
0 0 0


︸ ︷︷ ︸

Λ1(θq)

+g̃EE1>(q)

 0 0 0
0 0 0

cos θq sin θq 0


︸ ︷︷ ︸

Λ1>(θq)

+g̃EE2(q)

 cos2 θq cos θq sin θq 0
cos θq sin θq sin2 θq 0

0 0 0


︸ ︷︷ ︸

Λ2(θq)

G̃EM(q) =g̃EM0‖(q)

 0 1 0
−1 0 0
0 0 0


︸ ︷︷ ︸

Λ0×

+g̃EM2(q)

 cos θq sin θq sin2 θq 0
− cos2 θq − cos θq sin θq 0

0 0 0


︸ ︷︷ ︸

Λ2×

+g̃EM1(q)

 0 0 − sin θq
0 0 + cos θq
0 0 1


︸ ︷︷ ︸

Λ1×

+g̃EM1>(q)

 0 0 0
0 0 0

− sin θq cos θq 1


︸ ︷︷ ︸

Λ1×>

where the > superscript indicates matrix transpose. The expressions for G̃
ME

and G̃
MM

are similar, involving the same Λ matrices with different g̃ prefactors.

2.3.2 Evaluate θq integrals

Using Table 3, the θq integral in (21) may be evaluated analytically to yield
Bessel-function factors Jν(qρ) (ν ∈ {0, 1, 2}) times Λ matrices, now evaluated
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1

2π

∫ 2π

0

eiqρ cos(θq−θρ)



1

cos θq

sin θq

cos2 θq

cos θq sin θq

sin2 θq


dθq =



J0(qρ)

iJ1(qρ) cos θρ

iJ1(qρ) sin θρ

−J2(qρ) cos2 θρ + J1(qρ)
qρ

−J2(qρ) cos θρ sin θρ

−J2(qρ) sin2 θρ + J1(qρ)
qρ


,

Figure 3: Table of integrals used to reduce 2D integrals over q to 1D integrals
over |q|.

at θρ. For example, one term in the expansion of G(ρ) is∫ ∞
0

qdq

2π
g̃EE1(q)

∫ 2π

0

dθq
2π

Λ1(θq)e
iqρ cos(θq−θρ)︸ ︷︷ ︸

iJ1(qρ)Λ1(θρ)

=


∫ ∞
0

dq
[ q

2π
g̃EE1(q) · iJ1(qρ)

]
︸ ︷︷ ︸

g̃EE1(q,ρ)

︸ ︷︷ ︸
gEE1(ρ)

Λ1(θρ)

The second line here defines some new symbols: g̃ are functions of q and ρ
defined as products of g̃(q) factors times Jν(qρ) factors and other factors, while
g are functions of ρ obtained by integrating out the q dependence of g(q, ρ). The
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full set of rules defining the g̃ is

g̃EE0‖(q, ρ) ≡ q

2π

[
g̃EE0‖(q)J0(qρ) + g̃EE2(q)

J1(qρ)

qρ

]
(24a)

g̃EE0z(q, ρ) ≡ q

2π
g̃EE0z(q)J0(qρ) (24b)

g̃EE1(q, ρ) ≡ i q
2π
g̃EE1(q)J1(qρ) (24c)

g̃EE1>(q, ρ) ≡ i q
2π
g̃EE1>(q)J1(qρ) (24d)

g̃EE2(q, ρ) ≡ − q

2π
g̃EE2(q)J2(qρ) (24e)

g̃EM0‖ ×(q, ρ) ≡ q

2π

[
g̃EM0‖(q)J0(qρ) + g̃EM2(q)

J1(qρ)

qρ

]
(24f)

g̃EM1×(q, ρ) ≡ i q
2π
g̃EM1A(q)J1(qρ) (24g)

g̃EM1×>(q, ρ) ≡ i q
2π
g̃EM1B(q)J1(qρ) (24h)

g̃EM2×(q, ρ) ≡ − q

2π
g̃EM2J2(qρ) (24i)

2.3.3 Evaluate Sommerfeld integrals over q

Assembling the above pieces, the substrate DGF correction G is a sum of 22
terms:6

G(ρ) =

22∑
m=1

g(m)(ρ)Λ(m)(θρ),

where the g(m)(ρ) functions are defined by Sommerfeld integrals:

g(m)(ρ) ≡
∫ ∞
0

g̃(m)(q, ρ) dq. (25)

6This tally treats the integrals of the two integrand terms on the RHS of (24a) as two
separate integrals [and similarly for (24f) and the corresponding equations for the ME and
MM quadrants]. If the terms are lumped together then the number of distinct g functions is
18.
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3 scuff-em integration: Substrate contributions
to BEM matrix and RHS vector

3.1 Fields of individual basis functions

GEE =

3.2 SIE matrix elements: Panel-panel integrals

If Sα, Sβ are two RWGSurfaces exposed to the outermost (ambient) region in a
scuff-em geometry, then the elements of the SIE matrix elements correspond-
ing to any pair of basis functions {ba ∈ Sα,bb ∈ Sβ} receive corrections of the
form

∆MPQ

ab =
〈
ba

∣∣∣GPQ

∣∣∣bb〉
≡
∫∫

ba(xa) · GPQ(xa,xb) · bb(xb) dxb dxa (26)

I will consider two different approaches for evaluating the panel-panel integrals7

here:

1. The spectral inner approach: In this case I simply evaluate the panel-
panel cubature in (26), with values of G at each cubature point computed
via the methods of libsubstrate as described in the previous section
(possibly accelerated via interpolation tables). I call this the “spectral
inner” method because in this case the q integral in the definition of G is
the innermost of 3 integrals. Indeed, inserting equation (22) we have

∆MPQ

ab ≡
∫∫

ba(xa)
{∑

g(m)(ρ)Λ(m)(θρ)
}

bb(xb) dxb dxa

[where ρ = (xa − xb)‖ = (ρ cos θρ, ρ sin θρ)]. Recalling the definition (25),
this is a sum of triple integrals:

≡
∫∫

ba(xa)

{∑[∫ ∞
0

g̃(m)(q, ρ)dq

]
Λ(m)(θρ)

}
· bb(xb) dxb dxa.

(27)

2. The spectral outer approach: In this case I rearrange the order of in-
tegration in (28) so that the q integral is the outermost integral, with
an integrand defined for each q by a panel-panel integral involving the
spectral-domain GF:

∆MPQ

ab =

∫ ∞
0

{∫∫
ba(xa)

[∑
g̃(m)(q, ρ)Λ(m)(θρ)

]
bb(xb) dxb dxa

}
dq

(28)
7I refer to 4-dimensional integrals like (26) as “panel-panel integrals” because they are a

sum of contributions of integrals over pairs of flat triangular panels.
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GEE

ij = δij
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4 Metal-on-Insulator geometries

E = iwA−∇φ

= iwµG0 ? J− 1

iωε
∇G0 ? ρ

G̃App =
1

2π
qJ0(qρ)ζApp

G̃Apz = − 1

2π
(εr − 1)q2J1(qρ)ζApz

G̃Φ =
1

2π
ρJ0(qρ)ζΦ

ζApp =
1

DTE
×

{
e−u0z

sinhu(z+h)
sinhuh

ζApz =
1

DTEDTM
×

{
e−u0z

coshu(z+h)
coshuh

ζΦ =
N

DTEDTM
×

{
e−u0z

sinhu(z+h)
sinhuh

N

DTEDTM

u→u0−−−−→ 1− e−2u0h

u0(ε+ 1)

∞∑
n=0

[
− ηe−2u0h

]n
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5 Unit-test framework

The libsubstrate standalone library comes with a unit-test suite to test core
functionality related to calculation of substrate DGFs. Separately, the unit-test
suite for libscuff includes tests to check the integration of libsubstrate into
libscuff.

5.1 libsubstrate unit tests

5.1.1 tGTwiddle

The unit-test code tGTwiddle.cc tests that the full Fourier-space DGF Γ̃(q, zD, zS)
satisfies the appropriate boundary conditions at each layer of the layered sub-
strate, namely

C+(P, i, `)Γ̃PQ

ij (q, z` + η, zS)C−(P, i, `)Γ̃PQ

ij (q, z` − η, zS) (29)

where

C±(P, i, `) =


1, i ∈ {x, y}
ε±` , i = z, P = E

µ±` , i = z, P = H

where {ε, µ}±` are the material properties for the layer above/below z`, i.e.
(Figure ??)

{ε`, µ`}+ = {ε`, µ`}, {ε`, µ`}− = {ε`+1, µ`+1}.

If a ground plane is present, we have the additional condition

Γ̃PQ

ij (q, zGP, zS) = 0 for i ∈ {x, y}. (30)

Conditions (29) and (30) must hold independently of the indices Q ∈ {E,H}
and j ∈ {1, 2, 3} and of the values of q and zS.



Homer Reid: Implicit substrates in full-wave scuff-em 19

A Symbols and indices used in this document

A.1 Symbols

Symbol Arguments Description

F r, geometry Field six-vector F =
(

E
H

)
C r, geometry Current six-vector C =

(
J
M

)
or C =

(
K
N

)
Γ ρ, zD, zS, ω, geometry Full (bare+scattered) 6× 6 dyadic Green’s function, F = Γ ? C

Γ0r ρ, zD, zS, ω, ε
r, µr Bare (homogeneous) 6× 6 dyadic Green’s function in region r

G ρ, zD, zS, ω, geometry Scattering contribution to Γ (Γ = Γ0r + G)

P r, geometry Potential eight-vector P =


AE

ΦE

AM

ΦM



S r, geometry Source eight-vector S =


J
ρE

M
ρM


Λ ρ, zD, zS, ω, geometry Full (bare+scattered) 8× 8 dyadic Green’s function, P = Π ? S

Λ0r ρ, zD, zS, ω, geometry Bare (homogeneous) 8× 8 dyadic Green’s function for region r

L ρ, zD, zS, ω, geometry Scattering contribution to Λ (Λ = Λ0r + L)
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A.2 Indices

Index Range Significance

i, j {1, 2, 3} Cartesian directions x, y, z

I, J {1, 2, 3, 4, 5, 6}

Electric/magnetic field/current components

1,2,3 Ex,y,z, Jx,y,z, Kx,y,z

4,5,6 Hx,y,z, Mx,y,z, Nx,y,z

µ, ν {1, 2, 3, 4, 5, 6, 7, 8}

Electric/magnetic potential/source components

1,2,3 AE
x,y,z, Jx,y,z, Kx,y,z

4 ΦE, ρE, σE

5,6,7 AM
x,y,z, Mx,y,z, Nx,y,z

8 ΦM, ρM, σM
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B 8× 8 Dyadic Green’s Functions

The usual 6× 6 dyadic Green’s function Γ operates on a six-vector of currents
to yield a six-vector of fields. It is convenient to consider a slightly different
object that operates on an eight-vector of sources to yield an eight-vector of
potentials.

In the presence of magnetic currents, the usual (electric-current-sourced) vec-
tor and scalar potentials AE,ΦE, are joined by their magnetic-current-sourced
counterparts AM,ΦM, which are related to the fields according to

E = iωµAE − 1

iωε
∇ΦE −∇×AM

M = ∇×AE + iωεAM − 1

iωµ
∇ΦM.

In a homogeneous region, the potentials8 produced by given source distributions
{J,M} are

AE(xD) =

∫
G0(xD − xS)J(xS) dxS, ΦE(xD) =

∫
G0(xD − xS)

[
∇ · J

]
dxS

AM(xD) =

∫
G0(xD − xS)M(xS) dxS, ΦM(xD) =

∫
G0(xD − xS)

[
∇ ·M

]
dxS

where

G0(r) =
eik|r|

4π|r|
.



Ex

Ey

Ez

Hx

Hy

Hz


=



iωµG0 0 0 − 1
iωε∂xG0 0 ∂zG0 −∂yG0 0

0 iωµG0 0 − 1
iωε∂yG0 −∂zG0 0 ∂xG0 0

0 0 iωµG0 − 1
iωε∂zG0 ∂yG0 −∂xG0 0 0

0 −∂zG0 ∂yG0 0 iωεG0 0 0 − 1
iωµ∂xG0

∂zG0 0 ∂xG0 0 0 iωεG0 0 − 1
iωµ∂yG0

−∂yG0 ∂xG0 0 0 0 0 iωεG0 − 1
iωµ∂zG0


?



Jx

Jy

Jz

∇ · J
Mx

My

Mz

∇ ·M



8Note that my ΦE,M are iω times the actual scalar potentials due to the charge distributions
associated with currents J,M.


