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In this note I discuss the evaluation of the E and H fields due to RWG cur-
rents on a single triangular source panel P in the case where the evaluation point
lies on or near the source panel. My method is essentially that of Graglia1; this
is a desingularization scheme in which the first few terms in the low-frequency
series expansion of the Green’s function are subtracted off and evaluated ana-
lytically. However, in scuff-em I need also to compute the derivatives of the
E and H fields, which requires an extension of Graglia’s methods.

The algorithm described here is implemented in the file GetNearFields.cc

in the scuff-em source distribution.
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1 Fields from reduced potentials

1.1 Reduced vector and scalar potentials

Consider a triangular panel P on which we have a flow of surface current de-
scribed by an RWG basis function bα(x) with source vertex Q. I begin by
defining “reduced” vector and scalar potentials produced by this current at a
point x:

a(P; Q; x) =
`

2A

∫
P

(x′−Q)G(x,x′) dx′, p(P; x) = 2 · `
2A

∫
P
G(x−x′) dx′,

(1)
where ` is the length of the edge associated with basis function b, A is the area
of P, and

G(r) =
eik|r|

4π|r|
is the scalar Helmholtz Green’s function.

The total reduced vector and scalar potentials of bα involve contributions
from two panels:

aα(x) = a(P+,Q+,x)−a(P−,Q−,x), pα(x) = p(P+,Q+,x)−p(P−,Q−,x).

In terms of aα and pα, I can define the “reduced fields” of basis function bα
according to

eα(x) = aα(x) +
1

k2
∇pα(x), hα(x) = ∇× aα(x) (2)

Given a set of RWG functions {bα} populated with electric and magnetic
surface-current coefficients {kα, nα}, the full E and H fields at x are

E(x) =
∑
α

{
ikZkαeα(x)− nαhα(x)

}
,

H(x) =
∑
α

{
kαhα(x) +

ik

Z
nαeα(x)

}
where k is the wavenumber in the material region containing x and Z = Z0Z

r

with Z0 the impedance of free space and Zr the relative wave impedance of the
material.

To compute the first derivatives of the reduced fields we need the second
derivatives of the reduced potentials:

∂iej(P±; x) = ∂iaj(P±; x)+
1

k2
∂i∂jp(P±, c), ∂ihj(P±; x) = εjk`∂i∂ka`(P±; x).
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1.2 Desingularized reduced potentials

To compute a and p at evaluation points x on or near the source panel P it is
convenient to invoke the expansion

G(r) =
eikr

4πr
=

1

4πr
+ (ik)

1

4π
+ (ik)2

r

8π
+

ExpRelBar(ikr, 3)

4πr

where ExpRelBar is just the usual exponential minus the first few terms in its
series expansion:2

ExpRelBar(x,N) = ex −
N−1∑
n=0

xn

n!
=

∞∑
n=N

xn

n!
.

The reduced potentials due to P are

p(x) = 2
`

2A

[
1∑

n=−1

(ik)n+1

4π
p(n)(x) + pDS(x)

]

a(x) =
`

2A

[
1∑

n=−1

(ik)n+1

4π
a(n)(x) + aDS(x)

]
where3

p(n)(x) =

∫
P
rn dA (3)

a(n)(x) =

∫
P

(x′ −Q)rn dA. (4)

(here r = |x′ − x|). To write a(n) in a more convenient form, let x be the
projection of the evaluation point into the plane of the panel and write

a(n)(x) =

∫
P

(
x′ − x + x−Q

)
rn dA

=

∫
P

(
x′ − x

)
rn dA− (Q− x)

∫
P
rndA.

To proceed I now define scalar and vector-valued functions according to4

Ip(P,x) ≡
∫
P
rp dA (5a)

J p(P,x) ≡
∫
P

r · rp dA. (5b)

2ExpRelBar is similar to, but distinct from, the function named ExpRel in the gnu scien-
tific library.

3Two special cases that may be computed analytically are p(0) = A,a(0) = A(xc − Q)
where A is the panel area and xc is its centroid. These are independent of the evaluation
point x and thus do not contribute to derivatives.

4Note that I use a p superscript for I and J but an (n) superscript for a and p. This is
because the indices p and n have different ranges: The n values for which I need a(n) and
p(n) and their derivatives are n = −1, 0, 1, but computing all of these quantities turns out to
require Ip and J p for p = −5,−3,−1, 1.
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where r = x′ − x is a vector that has nonzero components only in the plane of
P. In terms of I and J , the reduced potentials are

p(n)(P; x) = In(P; x), a(n)(P; x) = J n(P; x)−
(
Q− x

)
In(P; x) (6)

Similarly, derivatives of a(n) and p(n) are related to derivatives of Ip and J p:

∂ip
p(x) = diIp(P,x)

∂ia
p
j (x) = ∂iJ pj (P,x)− (Q− x)j∂iIp − δijIp(P,x)

The two-dimensional integrals in the quantities Ip and J p defined by Equa-
tion (5b), as well as their derivatives, may be evaluated analytically in closed
form, as discussed in the following section.
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Figure 1: Rotated and translated coordinate system (û, v̂, ŵ) for evaluation of
I,J integrals. The panel lies in the uv plane with one edge parallel to the û
axis. The origin of the uv plane is the projection of the evaluation point into
the plane of the panel. The perpendicular distance from the plane of the panel
to the evaluation point is w0.

2 Evaluation of I,J integrals

2.1 Modified coordinate system

Let the panel P have vertices {V1,V2,V3}. For convenience in what follows, we
introduce a rotated and translated coordinate system with cartesian coordinates
(u, v, w), in which P lies entirely in the uv plane (the panel normal n̂ defines the
ŵ axis) and edge V1V2 lies parallel to the û axis (Figure 1). The unit vectors
of this system are

û =
V2 −V1

|V2 −V1|
, v̂ = ŵ × û, ŵ =

(V2 −V1)× (V3 −V1)

|(V2 −V1)× (V3 −V1)|
In the modified coordinate system, the evaluation point has coordinates x =
(ρ0, w0) with

w0 = (x0 − xc) · ŵ, ρ0 = (x0 − xc)− w0ŵ

(where xc is the centroid of P). It is convenient to choose the origin of the (u, v)
plane to be the point ρ0. The (u, v, w) coordinates of the ith panel vertex are
then Vi = (ui, vi, 0) where

ui = (Vi − xc) · û, vi = (Vi − xc) · v̂.

I also define a two-dimensional unit vector ˆ̀
i pointing in the direction of the

ith panel edge according to

ˆ̀
i =

Vi+1 −Vi

|Vi+1 −Vi|
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and a two-dimensional unit vector m̂i normal to the ith panel edge according
to

m̂i = ŵ × ˆ̀
i.

2.2 Reduction of surface integrals to line integrals

I now convert the two-dimensional (surface) integrals {I,J }p defined by (5b)
into one-dimensional (line) integrals by using Stokes’ theorem in the forms∫

P
∇ · f(ρ) dA =

∮
∂P

f(ρ) · m̂ d` (7a)∫
P
∇f(ρ) dA =

∮
∂P

f(ρ) m̂ d`. (7b)

[Here ρ = (u, v).]
First consider the vector-valued function

f(ρ) =
1

p+ 2

[ρ2 + w2](p+2)/2

ρ
ρ̂

with divergence

∇ · f(ρ) =
1

ρ

∂

∂ρ

(
ρfρ(ρ)

)
= [ρ2 + w2]p/2.

Applying (7a) to this function yields

Ip ≡
∫
P

[ρ2 + w2]p/2dA =
1

(p+ 2)

∫
∂P

[ρ2 + w2](p+2)/2

ρ
ρ̂ · m̂ d`.

Next consider the scalar function

f(ρ) =
1

p+ 2
[ρ2 + w2](p+2)/2

with gradient
∇f(ρ) = ρ[ρ2 + w2]p/2.

Applying (7b) to this function yields

J p ≡
∫
P
ρ · rpdA =

1

(p+ 2)

∫
∂P

[ρ2 + w2](p+2)/2m̂ d`.

2.3 Evaluation of line integrals

Line integrals are sums of integrals over line segments (edges). On edge i, we
have

ρ(s, ti) = sˆ̀i − tim̂i, ρ(s, ti) =
√
s2 + t2i , ρ̂ · m̂ = − ti

ρ
.
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Here ti is the perpendicular distance from edge ViVi+1 to the origin and s runs
from s−i to s+i , where

ti = −Vi · m̂i = −Vi+1 · m̂i

s−i = Vi · ˆ̀i
s+i = Vi+1 · ˆ̀i

Then we have

Ip =
1

(p+ 2)

∫
∂P

[ρ2 + w2](p+2)/2

ρ
ρ̂ · m̂ d`

= − 1

(p+ 2)

∑
i

ti

∫ s+i

s−i

(s2 + t2i + w2)(p+2)/2

(s2 + t2i )
ds︸ ︷︷ ︸

Ip(s−i ,s
+
i ,ti,w)

J p =
1

(p+ 2)

∫
∂P

[ρ2 + w2](p+2)/2m̂ dˆ̀

=
1

(p+ 2)

∑
i

m̂i

∫ s+i

s−i

[s2 + t2i + w2](p+2)/2ds︸ ︷︷ ︸
Jp(s−i ,s

+
i ,ti,w)

.

The one-dimensional integrals defining Ip and Jp may be evaluated in closed
form:

p Ip(s−, s+, t, w) Jp(s−, s+, t, w)

−5 t
w2X2

(
s−

R− − s+

R+

)
+ ζ

w3
1
X2

(
s+

R+ − s−

R−

)
−3 ζ

w Λ

−1 wζ + tΛ 1
2

(
R+s+ −R−s− +X2Λ

)
+1 t

2

[
R+s+ −R−s− + Λ(t2 + 3w2)

]
+ w3ζ

1
8

[
2R+s+3 − 2R−s−3 +

5X2(R+s+ −R−s−) + 3ΛX4
]

In this table, we have used the following shorthand:

X =
√
t2 + w2, R+ =

√
s+2 +X2, R− =

√
s−2 +X2

Z+ = R+ + s+ Z− = R− + s−

Λ = log
Z+

Z−
, ζ = atan

(
ws+

tR+

)
− atan

(
ws−

tR−

)
2.4 Derivatives of reduced potentials

2.4.1 Potential derivatives from I, J derivatives

When computing derivatives it is easiest to work first in the û, v̂, ŵ coordinate
system and later rotate back to the original coordinate system. In this case,
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in-plane derivatives (derivatives with respect to the u, v coordinates) are distin-
guished from normal derivatives (derivatives with respect to the w coordinate).
To highlight this distinction, in what follows the subscripts α, β, γ will refer
only to the in-plane coordinates (u, v coordinates), so that e.g. ∂αI refers to
an in-plane derivative, while ∂wI is a normal derivative. Note that the vector
potential a, like the quantities J and Q, has only in-plane components.

The starting point is equation (6):

p(n) = In, a(n)γ = J nγ −QγIn

Derivatives of p are just derivatives of I, computed as discussed below.
First derivatives of a take the form

∂βa
(n)
γ = ∂βJ nγ + nQγJ n−2β + δβγIn

∂wa
(n)
γ = ∂wJ nγ −Qγ∂wIn

= nw
[
J n−2γ −QγIn−2

]
When computing second derivatives of a, it turns out that the double normal
derivative ∂2waγ and the mixed second partial ∂w∂αaγ are straightforward to
compute in terms of I,J and their first derivatives:

∂w∂βa
(n)
γ = (n− 2)w

[
∂βJ (n−2)

γ + nQγJ n−4β

]
+ nwδβγIn−2

∂2wa
(n)
γ = n

[
J n−2γ −QγIn−2

]
+ n(n− 2)w2

[
J n−4γ −QγIn−4

]
The double in-plane derivative ∂α∂βaγ is more difficult to compute. However,
it turns out we don’t need to compute this quantity as long as we are only
interested in first derivatives of the E and H fields. To see this, note that
second derivatives of a only enter in the computation of first derivatives of H,
which involves differentiating the curl of a. In the (uvw) system, the curl of a
reads

∇× a = −∂wavû + ∂wauv̂ + (∂uav − ∂vau)ŵ

The w derivative of this is

∂w(∇× a) = −∂2wavû + ∂2wauv̂ + (∂w∂uav − ∂w∂vau)ŵ

which does not require the double in-plane derivative. The in-plane derivative
of ∇× a is

∂α(∇× a) = −∂α∂wavû + ∂α∂wauv̂ + (∂α∂uav − ∂α∂vau)ŵ
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To elucidate the structure of the w component of this, I write

∂ua
(n)
v − ∂va(n)u = −n

∫ [(
x
)
u

(
x−Q

)
v
−
(
x
)
v

(
x−Q

)
u

]
︸ ︷︷ ︸(

Q
)
u

(
x
)
v
−
(
Q
)
v

(
x
)
u

rn−2 dA

= −n
[(

Q
)
u

∫ (
x
)
v
rn−2 dA−

(
Q
)
v

∫ (
x
)
u
rn−2 dA

]
= −n

[(
Q
)
u
J n−2v −

(
Q
)
v
J n−2u

]
and thus

∂α(∇× a)w = −n
[(

Q
)
u
∂αJ n−2v −

(
Q
)
v
∂αJ n−2u

]
.

The upshot is that all quantities needed to compute first and second deriva-
tives of the potentials may be obtained from the I, J integrals and their first
derivatives.

2.4.2 Derivatives of I, J integrals

(In what follows, subscripts µ, ν refer to derivatives with respect to coordinates
in the plane of the panel [u, v derivatives in the (u, v, w) system], as distinct
from w derivatives, which are directional derivatives in the direction normal to
the panel.)

Derivatives of the I integrals, and the normal derivative of the J integrals,
may be carried out at the level of surface integrals:

∂µIp(x) = ∂µ

∫
P

[ρ2 + w2]p/2 dA = −p
∫
P
ρµ[ρ2 + w2](p−2)/2 dA

= −pJ p−2µ (x)

∂wIp(x) = ∂w

∫
P

[ρ2 + w2]p/2 dA = pw∂w

∫
P

[ρ2 + w2](p−2)/2 dA

= pwIp−2(x)

and similarly

∂wJ p(x) = pwJ p−2(x)

In-plane derivatives of the J integrals are easiest to carry out at the level of
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line integrals:

∂µJ pν (x) =
1

(p+ 2)

∑
i

{(
∂µJ

p
)
m̂iν

}
∂µJ

p(s−i , s
+
i , ti, w) =

[
∂Jp

∂ ˆ̀
i

ˆ̀
i +

∂Jp

∂m̂i
m̂i

]
∂Jp

∂ ˆ̀
i

= −(s−2i + t2i + w2)(p+2)/2 − (s+2
i + t2i + w2)(p+2)/2

∂Jp

∂m̂i
= (p+ 2)tiJ

p−2

2.4.3 Derivatives of desingularized terms

We have

GDS(r) =
ExpRelBar(ikr, 3)

4πr

and thus

∂iG
DS(r) = ri

[
ik
ExpRelBar(ikr, 2)

4πr2
− ExpRelBar(ikr, 3)

4πr3

]
∂i∂jG

DS(r) = δij

[
ik
ExpRelBar(ikr, 2)

4πr2
− ExpRelBar(ikr, 3)

4πr3

]
+ rirj

[
(ik)2

ExpRelBar(ikr, 1)

4πr3
− 3ik

ExpRelBar(ikr, 2)

4πr4
+ 3

ExpRelBar(ikr, 3)

4πr5

]
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3 Far fields at nearby points

The contribution of a single panel P to the reduced fields may be written in an
alternative way using the dyadic Green’s functions G(r),C(r)

ei(x) =

∫
Gij(x,x

′)bj(x
′)dx′, hi(x) = −ik

∫
Cij(x,x

′)bj(x
′)dx′

Retaining only far-field contributions,

Gij =
(
δij +

rirj
r2

) eikr
4πr

, −ikCij = −ikεijk
rk
r

eikr

4πr

Separate ei into singular and non-singular contributions:

e(x) =
`

8πA

[
e(−1)(x) + eDS(x)

]
e
(−1)
i (x) =

∫ (
δij
r

+
rirj
r3

)
(x−Q)j dr

eDS

i (x) =

∫ (
δij +

rirj
r2

) ExpRelBar(ikr, 1)

r
(x−Q)j dr

The contributions to e(−1) are easiest to work out in the coordinate system of
P. The first term is

e(−1)aµ (x) =

∫
(x′ −Q)µ

r
dA

= a(−1)µ

The second term is

e(−1)bµ (x) =

∫
(x′ − x)µ(x′ − x)ν(x′ −Q)ν

r3
dA

=

∫
(x′ − x)µ

r
dA−

(
Q
)
ν

∫
(x′ − x)µ(x′ − x)ν

r3
dA

The w component of this is

e(−1)bw (x) = wI−1 − w
(
Q
)
ν
J−3ν


