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1 Geometries in libscuff

libscuff thinks of a geometry as consisting of a collection of three-dimensional
regions, bounded by two-dimensional surfaces.

Each region Rr is a contiguous volume throughout which the permittivity
and permeability are spatially constant,

ε(x, ω) ≡ εr(ω), µ(x, ω) ≡ µr(ω)

where εr(ω) and µr(ω) may be arbitrary user-specified functions of frequency.
(Only linear, isotropic ε and µ are supported.) The region with index r =
0 is known as the “exterior” medium of the libscuff geometry; it is always
present in every libscuff geometry and has by default the permittivity and
permeability of vacuum. The user may redefine the material properties of the
exterior medium as desired.

Each surface is described by a surface mesh consisting of a union of flat tri-
angular panels. Each surface lies at the interface between precisely two regions.
We identify one of these two regions as the “exterior” region for the surface
in question, and the other region is the “interior.” The normal vector to the
surface is always defined to point into the “exterior” region.1 (This is true even
for open surfaces; in this case the terminology “exterior” and “interior” doesn’t
quite make sense, but we can certainly still pick one of the two regions between
which a surface lies and decide that the normal vector will point into that region,
and we call that region the “exterior” region for the open surface.)

The regions and surfaces that define libscuff geometries are specified in ge-
ometry files, conventionally given the file extension .scuffgeo. The .scuffgeo

file is parsed to create an instance of a C++ class named RWGGeometry. This is
a big class containing lots of data fields and methods, but for the purposes of
this section the most important fields are the following:

class RWGGeometry

{

int NumRegions;

char **RegionLabels;

int NumSurfaces;

RWGSurface **Surfaces;

};

Simple geometries: OBJECT specifications

The simplest type of libscuff geometry consists of one or more compact ho-
mogeneous objects embedded in an external medium. In this case, each object
is described by a closed surface mesh (specified to libscuff as a mesh file in

1This requires that surfaces be orientable; Klein bottles are thus explicitly forbidden in
libscuff geometries, although PEC Möbius strips are allowed.
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one of the supported mesh file formats) together with an material designation.
Here’s an example:

RegionLabels

RWGSurface

RWGGeometry

NumRegions=2

EXTERIOR
TheSphere

NumSurfaces=1
RegionLabels Surfaces
0
1

0

MeshFile="Sphere_480.msh"
RegionIndices={0,1}

GoldSphere.scuffgeo:Content of file 
OBJECT
   MESHFILE Sphere_480.msh
   MATERIAL Gold
ENDOBJECT

data structure: 

Figure 1: A simple .scuffgeo file and some fields in the corresponding
RWGGeometry structure.

In the language of regions and surfaces discussed above, each OBJECT state-
ment adds one new region and one new surface to a geometry. The newly added
region is always taken to be the interior region associated with the newly added
surface, and corresponds to the volume inside the object; the new surface exists
at the interface between this region and the exterior medium.

We said above that surface meshes for compact objects should be closed
surfaces. The exception to this statement is that PEC (perfectly electrically
conducting) or IPEC (imperfectly electrically conducting) bodies may be de-
scribed by open surfaces. (An IPEC body is a PEC body with finite surface
conductivity). For both PEC and IPEC bodies the interior fields vanish iden-
tically, and there is no need for such bodies to have finite interior volume. An
OBJECT statement declaring a new PEC or IPEC object adds one new surface
but not one new region to the geometry.

Simple geometries: Nested objects

It is possible for an object defined by an OBJECT declaration to be fully contained
inside another OBJECT. The nesting inclusion relationship is automatically de-
tected by libscuff.

More complicated geometries: REGION and SURFACE state-
ments

Some geometries are too complicated to be defined as collections of compact
objects bounded by closed surfaces. One example is a composite sphere in
which the upper and lower hemispheres consist of different materials. Another
example is a metallic nanoparticle (say, a disc) lying atop a dielectric substrate.
The common feature of these two examples that prevents description in terms
of simple closed objects is the presence of multi-material junctions; these are
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one-dimensional subspaces at which three or more material regions meet. For
the composite sphere, the multi-material junction would be the equator; for the
disc on the substrate, it would be the lower circumference of the disc.

Geometries like this are described in libscuff using REGION and SURFACE

statements. For example, the composite sphere above may be specified like this:

RegionLabels

RWGSurface

RWGGeometry

NumRegions=3

EXTERIOR
UpperHemisphere

RegionLabels
0
1

MeshFile="UpperHemisphere.msh"
RegionIndices={0,1}

BiHemisphere.scuffgeo:Content of file data structure: 
REGION Exterior        MATERIAL VACUUM
REGION UpperHemisphere MATERIAL Gold
REGION LowerHemisphere MATERIAL Silicon

SURFACE UpperHemisphereSurface
 MESHFILE UpperHemisphere.msh
 REGIONS  Exterior UpperHemisphere
ENDSURFACE

SURFACE LowerHemisphereSurface
 MESHFILE LowerHemisphere.msh
 REGIONS  Exterior LowerHemisphere
ENDSURFACE

SURFACE EquatorialPlane
 MESHFILE EquatorialPlane.msh
 REGIONS  UpperHemisphere LowerHemisphere
ENDSURFACE                                                   

2 LowerHemisphere

NumSurfaces=3

0
1
2

Surfaces

RWGSurface
MeshFile="LowerHemisphere.msh"
RegionIndices={0,2}

RWGSurface
MeshFile="EquatorialPlane.msh"
RegionIndices={1,2}

Figure 2: A more complex .scuffgeo file and some fields in the corresponding
RWGGeometry structure.

Extended geometries: LATTICE statements

Extended geometries are described using LATTICE statements in the scuffgeo

file. For example, here’s an infinite square-lattice array of gold spheres:

LATTICE

VECTOR 1 0

VECTOR 0 1

ENDLATTICE

OBJECT TheSphere

MESHFILE Sphere_480.msh

MATERIAL Gold

ENDOBJECT

It is also possible for surfaces to straddle the lattice-cell boundaries. This
will be the case, for example, if you are describing an infinite planar surface
(possibly with holes). In this case, the surface mesh must be compatible with
the lattice specification, in the sense that every triangle edge that lies on the
unit-cell boundary must have an image edge lying one lattice-translate away.
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Extended geometries in which the exterior medium is non-
contiguous

In some extended geometries, it may be possible for the exterior medium to
be non-contiguous. For example, consider a thin film described by two planar
surfaces (the upper and lower surfaces of the film) with a LATTICE statement
indicating the surfaces are infinitely extended (comprised of an infinite 2D lattice
of the unit-cell surfaces). In this case, you probably think of the region above
the upper surface and the region below the lower surface as both belonging to
the same region, but as far as libscuff is concerned they must be two different
regions.

The reason for this is the following: Suppose both the upper half-space and
the lower half-space were the same region (say Exterior). Then the upper and
lower surfaces of the slab would both have Exterior as one of the two regions at
whose interface they lie, and thus surface currents on both the upper and lower
surfaces would contribute to the scattered fields at all points in Exterior. But
this would be incorrect: Points in the upper half-space receive scattered-field
contributions only from currents on the upper surface, while points in the lower
half-space receive contributions only from the lower surface.

The situation would be different if the upper and lower half-spaces were
contiguous—which would be the case, for example, if the thin-film slab had
a hole in it. In this case, the upper and lower film surfaces (as well as the
hole sidewall surfaces) all form part of a single bounding surface separating the
film interior from Exterior, and hence surface currents on all of these surfaces
contribute to the scattered fields at points in Exterior.
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2 Representation of Surface Currents in libscuff

Surface Currents

libscuff is based on the surface-integral-equation approach to computational
electromagnetism. In this approach, the fundamental unknowns are tangen-
tial surface currents flowing on the surfaces that lie at the interface between
homogeneous material regions.

Electric and magnetic surface currents at dielectric interfaces

For the general case of a surface lying between two dielectric regions, we have
both an electric surface-current distribution K(x) and a magnetic surface-current
distribution N(x) (here x is a point lying on the surface). Both K and N are
strictly tangential to the surface; they have no normal component.

Physical interpretation of surface currents

One way to interpret the K and N currents is as effective source distributions
confined to the surfaces. In a real scattering problem involving dielectric bodies,
the incident fields induce a physical volume electric current distribution J(r)
which is nonzero for all points r inside dielectric bodies, and the scattered fields
are just the fields radiated by this source distribution. The surface currents
K and N are fictitious or (“effective”) source distributions with the property
that the fields they radiate exactly reproduce the field radiated by the physical
source distribution J, both inside and outside the body. What is unphysical
about K and N is that (a) they are confined to the surfaces, whereas the
physical induced source distribution J exists throughout the volume, and (b)
they include magnetic currents N, i.e. moving magnetic monopoles, which do
not actually exist in our universe.2 However, the fields radiated by K and N
are perfectly physical.

Another, perhaps more direct, way to interpret the K and N currents is that
they are nothing but rotated versions of the tangential components of the total
electric and magnetic fields at the surface, i.e. we have

K(x) = n̂×Htot(x), N(x) = −n̂×Etot(x).

Electric surface currents on PEC surfaces

In the special case of a PEC surface—whether closed or open—the magnetic
surface current vanishes identically (N = 0) and only the electric surface cur-
rent K is nonzero. In this case, the two interpretations of the surface currents
discussed above coincide physically: Incident fields really do excite physical elec-
tric currents on the surfaces of PEC bodies, these currents really are strictly

2Perhaps we should say no more than one of them exists in our universe: http://prl.

aps.org/abstract/PRL/v48/i20/p1378_1.
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Figure 3: Notation for RWG basis functions.

confined to the surfaces (in the idealized limit of a perfect electric conductor),
and the field radiated by these induced currents really is the full scattered field.

RWG Basis Functions

libscuff uses RWG basis functions3 to describe electric and magnetic surface
currents flowing on the surfaces in a geometry. Each RWG basis function is
assigned to a single interior edge in a surface mesh discretization, and is nonva-
nishing only on the two triangular panels that share that edge.

To construct the RWG basis function associated with an edge (Figure 3),
arbitrarily choose one of the two panels to be the positive panel P+ associated
with the basis function, while the other panel is the negative panel P−. Let the
vertices of the common edge be V1 and V2, and let the third vertex of P+ be
the positive or source vertex Q+ for the basis function, while the other opposite
vertex will be the negative or sink vertex Q−. Then the RWG basis function
b(x) associated with the edge is defined as follows:

b(x) =


+ l

2A+ (x−Q+), x ∈ P+

− l
2A+ (x−Q−), x ∈ P−

0, otherwise

where l is the length of the common edge (the distance V1V2) and A± are the
areas of P±. Thus the RWG function describes a current that emanates from

3S. M. Rao, D. R. Wilton, A. W. Glisson, IEEE Trans. Antennas Propagat. AP-30 409
(1982).
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Q+, grows linearly in strength as it flows along the surface of P+ toward the
common edge, begins decreasing linearly in strength after crossing over that
edge into P−, and is sunk into Q−. There is no current flow outside the pair of
panels because b(x) has no component normal to any of the four exterior edges
of the panel pair.

Figure 4 illustrates some of the libscuff data structures associated with a
single RWG basis function embedded in a surface mesh.
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NumEdges-1

24

...
0

Edges
iQP=13
iV1=65
iV2=87
iQM=51

iPPanel=17
iMPanel=39
PIndex=0
MIndex=2...

Index=24

RWGEdge

NumPanels-1

...
0

Panels

...

...
39

17

VI={13, 87, 65}
Index=17

VI={87, 65, 51}
Index=39

RWGEdge

RWGPanel

RWGPanel

RWGSurface

Figure 4: A single RWG basis function associated with an internal edge on
an RWGSurface, and some portions of data structures within the corresponding
RWGSurface instance that describe this basis function.



Homer Reid: libscuff Implementation and Technical Details 11

Half-RWG Basis Functions

It is also possible to assign basis functions to exterior edges of surface meshes,
i.e. edges that lie on the boundaries of open surfaces. Because these basis
functions are supported on just a single triangle instead of the usual two, I call
them half-RWG basis functions. scuff-em adopts the following conventions
regarding exterior edges and half-RWG basis functions.

• Like interior edges, each exterior edge in an RWGSurface is assigned an
RWGEdge structure. These are stored in the ExteriorEdges array in
RWGSurface.

• We identify the single panel associated to an exterior edge as the positive
panel (P+) for that edge; there is no negative panel. The RWGEdge struc-
ture for an exterior edge has iQM=iMPanel=MIndex=-1 and Index=-(nei+1),
where nei is the index of the edge in the ExteriorEdges array. All other
fields are set to valid values just as for interior edges.

• The class method RWGEdge *RWGSurface::GetEdgeByIndex(int Index)

returns a pointer to the RWGEdge structure with index Index, where Index
may be positive or negative. This will be

– an interior edge if 0<=Index<NumEdges

– an exterior edge if -(NumExteriorEdges+1)<Index<=-1

– NULL otherwise.

(Note that NumEdges is something of a misnomer; it should be called
NumInteriorEdges.)

• By default, the half-RWG basis functions associated with exterior edges
are excluded from the basis used by scuff-em to describe surface currents,
i.e. they make no contribution to the BEM matrix or RHS vector or
any post-processing quantities. To include half-RWG functions in the
basis, set the static class method RWGGeometry::UseHRWGFunctions=true

or use the environment variable SCUFF HALF RWG=1. I haven’t explored
this much, but perhaps it could be useful for describing singularities near
edges?

• The primary application of half-RWG basis functions in scuff-em is the
description of “ports” in RF structures (implemented in libRFSolver).

• In general, routines in libscuff that operate on RWG basis functions
(i.e. that input one or more RWGEdge * structures or {int ns, int ne}
index pairs) do the right thing when operating on half-RWG basis func-
tions. This streamlines the implementation of libRFSolver. For exam-
ple, matrix elements of the G,C kernels between full and half RWG basis
functions–which are needed to assemble the RHS vector for RF problems
with port-current excitations–may be computed by the same routines that
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compute matrix elements between pairs of full RWG basis functions, which
are needed to assemble the system matrix. Thus, all the complications of
singularity handling and frequency-independent integral caching are han-
dled automatically.
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3 Homogeneous Dyadic Green’s Functions

Before proceeding, we must pause briefly to establish our conventions and no-
tation for homogeneous dyadic Green’s functions.

Consider a spatial region characterized by spatially uniform relative permit-
tivity and permeability εr and µr. If we have known distributions of electric
and magnetic current J(x) and M(x), we can compute the electric and mag-
netic fields in terms of these currents and the properties of the medium, and the
relevant convolution kernels in this procedure are the dyadic Green’s functions
(DGFs):

Ei(x, ω) =

∫ {
ΓEE

ij (εr, µr;ω; x,x′)Jj(x
′) + ΓEM

ij (εr, µr;ω; x,x′)Mj(x
′)
}
dx′

Hi(x, ω) =

∫ {
ΓME

ij (εr, µr;ω; x,x′)Jj(x
′) + ΓMM

ij (εr, µr;ω; x,x′)Mj(x
′)
}
dx′.

Explicit expressions for the DGFs are

ΓEE(εr, µr, ω,x,x′) = iZ0Z
rkr G(kr,x− x′)

ΓME(εr, µr, ω,x,x′) = −ikrC(kr,x− x′)

ΓEM(εr, µr, ω,x,x′) = ikr C(kr,x− x′)

ΓMM(εr, µr, ω,x,x′) =
ikr

Z0Zr
G(kr,x− x′)

(
Z0 =

√
µ0

ε0
, Zr =

√
µr

εr
, kr =

√
µ0µrε0εr · ω

)
where G, the “photon Green’s function,” is the solution to the equation[

∇×∇×− k2
]
G(k; r) = δ(r)1; (1)

and C is defined by

C(k, r) = − 1

ik
∇×G(k, r). (2)

(Note that the Γ dyadics depend separately on ε, µ, and ω, while G and C
depend only on the combination k =

√
εµ · ω.)

Explicit expressions for the components of G and C are

Gij(k, r) =
eikr

4π(ik)2r3

[(
1− ikr + (ikr)2

)
δij +

(
− 3 + 3ikr − (ikr)2

)rirj
r2

]
Cij(k, r) =

eikr

4π(ik)r3
εijkrk

(
− 1 + ikr

)
These may also be written in the form

Gij(k, r) =
[
δij +

1

k2
∂i∂j

]
G0(k, r), Cij(k, r) = +

1

ik
εijl∂lG0(k, r) (3)



Homer Reid: libscuff Implementation and Technical Details 14

where G0 is the scalar Green’s function for the Helmholtz equation,

G0(k; r) =
eik|r|

4π|r|
(4)

which satisfies [
∇2 + k2

]
G0(k; r) = δ(r).

With these expressions, we can verify that equation (2) is actually just the first
half of a pair of reciprocal curl identities relating G and C :

1

ik
∇×G = −C,

1

ik
∇×C = G. (5)

(As usual with tensors and dyadics, the vector notation here is suggestive but
vague; the precise meaning of (2) is

1

ik
εiAB∂AGBj = −Cij ,

1

ik
εiAB∂ACBj = Gij .) (6)

Shorthand In what follows, an equation like

Ei(x, ω) =

∫
S

ΓEE

ij (εr, µr;ω; x,x′)Kj(x
′) dx′

will often be abbreviated to read

E(x) =

∫
S

ΓEE(Rr; x,x′) ·K(x′) dx′

(with ω arguments suppressed and the dependence on εr, µr condensed into a
dependence on the region Rr), or even abbreviated further to read

E = ΓEE(Rr) ?K

where ? denotes a convolution operation.
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4 Computation of the fields in libscuff geometries

Using the fields of individual basis functions as discussed in the previous section,
we can compute the total E and H fields at arbitrary points in a scuff-em
geometry.

4.1 The simplest case

The simplest case to consider is that in which we have a single compact body B
in vacuum; let the body surface be S = ∂B and suppose the incident fields arise
from sources lying outside B. Let the surface-current coefficients be {kα,nα},
so that the electric and magnetic surface currents are

K(x) =
∑
α

kαbα(x), N(x) =
∑
α

nαbα(x)

where {bα} is the set of RWG basis functions on surface ∂B. Then the fields at
a point outside B are

E(x) = Einc(x) +
∑
α

{
ik0Z0kαeα(k0; x)− nαhα(k0; x)

}
(7a)

H(x) = Hinc(x) +
∑
α

{
kαhα(k0; x) +

ik0
Z0

nαeα(k0; x)
}
. (7b)

The fields at a point inside B are

E(x) = −
∑
α

{
ik1Z1kαeα(k1; x)− nαhα(k1; x)

}
(8a)

H(x) = −
∑
α

{
kαhα(k1; x) +

ik1
Z1

nαeα(k1; x)
}
. (8b)

Note the following differences between (7) and (8):

• The incident fields contribute to (7) but not to (8).

• Equation (8) involves a minus sign that is not present in (7).

• Equation (7) involves the vacuum wavenumber k0 = ω/c and the vac-
uum wave impedance Z0 ≈ 377 Ω. Equation (8) involves the wavenumber

k1 =
√
εrµrk0 and wave impedance Z1 =

√
µr

εr Z0 for the body interior.

(Here {εr, µr} are the relative permittivity and permeability of the medium
inside body B at the frequency in question.)

4.2 The general case

The previous discussion was for the simplest case of a single compact body in
vacuum with incident-field sources lying outside the body. The generalization
to more complicated cases is straighforward.
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Figure 5: Contributions of objects to the scattered fields at an arbitrary point x.
Objects Oβ and Oγ contribute to the field at x “with a plus sign” (cf. equation
9). Object Oα contributes to the field at x “with a minus sign.” Objects Oδ
and Oλ do not contribute to the field at x.

Consider a point x in some region R of a libscuff geometry. In general, R
will be bounded by some collection of surfaces {Ss}. Let’s subdivide the set of
surfaces bounding R into two groups: a first set {Sα} for which R is the exterior
surface, and a second set {Sβ} for which R is the interior surface. Then the
electric field at x is

Ei(x) =
∑
α

∫
Sα

{
ΓEE

ij (R; x,x′)Kj(x
′) + ΓEM

ij (R; x,x′)Nj(x
′)
}
dx′

−
∑
β

∫
Sβ

{
ΓEE

ij (R; x,x′)Kj(x
′) + ΓEM

ij (R; x,x′)Nj(x
′)
}
dx′

+ Einc,r
i (x). (9)

In this equation, Einc,r is the field due to any incident field sources that lie inside
the regionRr. (The H fields are given by identical relations with {ΓEE,ΓEM, Einc,r} →
{ΓME,ΓMM, H inc,r}.)

Note the following points with respect to equation (9):

• Sources on surfaces Sα for which R is the exterior medium contribute to
the fields at x with a positive sign. Sources on surfaces Sβ for which R is
the interior medium contribute to the fields at x with a negative sign.

• In each line of (9), (i.e. regardless of the surface over which we are in-
tegrating) the Green’s functions used to compute the fields at x are the
Green’s functions for the homogeneous region R containing x. The mate-
rial properties of other regions are not referenced.
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5 BEM Formulations in libscuff

In previous sections we discussed how libscuff represents surface currents and
how libscuff uses surface currents to compute scattered fields. In this section
we discuss how libscuff actually computes the surface currents for a given
incident field. To this end, libscuff employs a variety of BEM formulations,
some of which may coexist in a single problem.

5.1 Continuous forms of the integral equations solved by
libscuff

5.1.1 The equation imposed at points on PEC surfaces

For PEC surfaces, libscuff imposes the electric field integral equation (EFIE).
This means that at each point x on a PEC surface S we require that the tan-
gential components of the total (incident + scattered) field vanish:

n̂×Etotal(x) = 0, x ∈ S (10)

where n̂ is the normal to the object surface at x.
To obtain an integral equation from (10), suppose that S is embedded in

a homogeneous material region R. Then the total field in (10) is a sum of
scattered and incident contributions; the former involve convolutions of the
surface-current distributions on all surfaces bounding R (including S plus any
other surfaces that may be part of the boundary of R), while the latter involve
only those incident-field sources lying interior to R. Equation (10) then reads∑
Ss⊂∂R

sgn
(
Ss, R

) ∮
Ss

(
ΓEE(R) ΓEM(R)
ΓME(R) ΓMM(R)

)(
K
N

)
dA = −

(
Einc,r

Hinc,r

)
(11)

or, in convenient shorthand,∑
Ss⊂∂R

sgn
(
Ss, R

) [( ΓEE(R) ΓEM(R)
ΓME(R) ΓMM(R)

)
?

(
Ks

Ns

)]
= −

(
Einc,r

Hinc,r

)
(12)

where the sum is over all surfaces Ss that constitute the boundary ∂R of the
region R (including S), ? denotes convolution, the s subscript on K,N indicates
the restriction of the current distributions to Ss, and

sgn
(
S,R

)
≡

{
+1 if R is the “exterior” region for S
−1 if R is the “interior” region for S.

As discussed in Section 1, the notions of “exterior” and “interior” are defined
even when S is an open surface; in that case its “exterior” region is the region
into which its surface normal points.
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Note that any PEC surfaces in the sum in (71), including S itself, have
N = 0 identically.

Note that equation (71) may be written using a shorthand notation:∑
Ss⊂∂R

sgn
(
Ss,R

)[
G(R) ? Cs

]
= −F inc,r (13)

where C, F , and G denote six-vector surface currents, six-vector fields, and 6×6
dyadic Green’s functions:

C ≡
(

K
N

)
, F ≡

(
E
H

)
, G(R) ≡

(
ΓEE(R) ΓEM(R)
ΓME(R) ΓMM(R)

)
.

We will use this 6-vector shorthand notation frequently in what follows.

5.1.2 The equation imposed at points on dielectric object surfaces:
PMCHWT formulation

By default, libscuff adopts the PMCHWT formulation of the BEM for dielec-
tric surfaces S. (Alternative formulations may be selected by setting internal
libscuff variables; see below.) In the PMCHWT formulation, we require that,
at each point x ∈ S, the tangential components of the total E and H fields be
continuous as we pass through S:

lim
η→0

[
Etotal(x + ηn̂)−Etotal(x− ηn̂)

]
‖

= 0 (14a)

lim
η→0

[
Htotal(x + ηn̂)−Htotal(x− ηn̂)

]
‖

= 0. (14b)

where the subscript ‖ extracts the vector components tangential to S at x.
To write an integral-equation version of this, analogous to (13), let R1 and

R2 be the two regions at whose interface S lies, with the surface normal to S
taken to point away fromR2 and intoR1. (Thus, if S is closed, R1 is its exterior
region and R2 is its interior region; if S is not closed then everything else goes
through in the same way, just without the classification of R1,2 as interior or
exterior). Then the integral-equation version of (14b) reads∑

Ss⊂∂R1

sgn
(
Ss,R1

)[
G(R1) ? Cs

]
‖
−

∑
Ss⊂∂R2

sgn
(
Ss,R2

)[
G(R2) ? Cs

]
‖

=
[
−F inc,r1 + F inc,r2

]
‖

(15)

The RHS of (15) describes the fields contributed by sources inside R2 minus the
fields contributed by sources inside R1.

Note that, when we consider the contribution made by surface S itself to
the sums on the LHS, we have sgn

(
S,R1

)
= −sgn

(
S,R2

)
, so the two terms on

the LHS wind up adding, not subtracting, for that surface.
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5.1.3 The equation imposed at points on dielectric object surfaces:
N-Müller formulation

The N-Müller formulation is an alternative to the PMCHWT approach that
yields a different set of integral equations whose discretization exhibits different
numerical behavior.4 To derive the equations of this formulation, consider a
surface S at the interface of two regions R1,2, and let n̂ be the normal to S
pointing into R1 and away from R2.5 One way to express the surface currents
is to compute the total fields in R1 at points approaching the surface from
within R1: (

K(x)

N(x)

)
= lim
η→0

(
+n̂×Htot

(
x + ηn̂

)
−n̂×Etot

(
x + ηn̂

) )
or, using the 6-vector notation introduced above,

C = lim
η→0

NF
(
x + ηn̂

)
= lim
η→0

N
[
F inc,r1

(
x + ηn̂

)
+ G(R1) ? C

]
(16)

where

N =

(
0 n̂×
−n̂× 0

)
and again F inc,r1 are the incident fields arising only from those field sources
inside R1.

On the other hand, another way to derive the same surface currents is to
compute the total fields in R2 at points approaching the surface from within
R2:

C = N
[
F inc,r2

(
x− ηn̂

)
− G(R2) ? C

]
(17)

Equation (16) and (17) are two distinct equations that must hold simultaneously.
If we subtract equation (17) from (16) and operate on both sides with −N , we
recover the PMCHWT equation (15). On the other hand, if we multiply (16)
by χ1 and (16) by χ2—where χr is the 6× 6 constant diagonal matrix

χr =

(
µr 0
0 −εr

)
with εr, µr the relative material properties of region R—and add the two equa-
tions instead of subtracting, we obtain(

χ1 + χ2

)
C = χ1NF inc,r1 + χ2NF inc,r2 +

[
χ1NG1 − χ2NG2

]
? C

4P. Yla-Oijala and M. Taskinen, “Well-conditioned Müller formulation for electromagnetic
scattering by dielectric objects,” IEEE Transactions on Antennas and Propagation, 53 3316
(2005)

5In contrast to other derivations, such as that of the previous footnote, I do not use
two different symbols to denote the two opposite orientations of the surface normal vector.
Throughout this derivation my n̂ vector points always in the same direction, namely, out of
R2 into R1. Similarly, there are not two different N matrices; there is only one N matrix.
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or, breaking out the 3x3 block components,(µ1 + µ2)K

−(ε1 + ε2)N

−
 n̂×

[
µ1Γ

ME

1 − µ2Γ
ME

2

]
n̂×

[
µ1Γ

MM

1 − µ2Γ
MM

2

]
n̂×

[
ε1Γ

EE

1 − ε2Γ
EE

2

]
n̂×

[
ε1Γ

EM

1 − ε2Γ
EM

2

]
?
K

N


=

 n̂×
[
µ1H

inc,r1 + µ2H
inc,r2

]
n̂×

[
ε1E

inc,r1 + ε2E
inc,r2

]
 . (18)

There is a subtlety in equation (18) that is not present in (15): In evaluat-
ing the convolutions on the LHS of (18), we must account for the δ−function
singularities in ΓME and ΓEM. [These terms cancel out of (15), which is why
we didn’t need to consider them above]. I think the easiest way to work out
what these are is to consider the magnetic field due to an infinite constant sheet
of x-directed electric surface current K confined to the xy plane. Then, by a
simple application of the right-hand rule, the magnetic field in the upper half
space points in the negative y-direction, while the magnetic field in the lower
half space points in the positive y-direction. Let the upper (lower) half-space
be R1 (R2). Then we have

n̂ = ẑ, K = Kx̂.

The magnetic field in the upper half-space is

ΓME

1 ?K = −1

2
Kŷ, z ≥ 0.

In the lower half-space, we find instead

ΓME

2 ?K = +
1

2
Kŷ, z ≤ 0.

Thus, at z = 0, we find

n̂×
[
µ1Γ

ME

1 − µ2Γ
ME

2

]
?K = − (µ1 + µ2)K

2
ẑ× ŷ

= +
(µ1 + µ2)K

2
x̂

=
(µ1 + µ2)

2
K. (19a)

and by analogous arguments we find

n̂×
[
ε1Γ

EM

1 − ε2Γ
EM

2

]
?N = − (ε1 + ε2)

2
N. (19b)

Using equations (19), we can rewrite the N-Müller system (18) in a way that



Homer Reid: libscuff Implementation and Technical Details 21

involves only the non-singular parts of the dyadic Green’s functions:

1

2

(µ1 + µ2)K

−(ε1 + ε2)N

−
 n̂×

[
µ1Γ

ME

1 − µ2Γ
ME

2

]
n̂×

[
µ1Γ

MM

1 − µ2Γ
MM

2

]
n̂×

[
ε1Γ

EE

1 − ε2Γ
EE

2

]
n̂×

[
ε1Γ

EM

1 − ε2Γ
EM

2

]
?
K

N


=

 n̂×
[
µ1H

inc,r1 + µ2H
inc,r2

]
n̂×

[
ε1E

inc,r1 + ε2E
inc,r2

]
 . (20)

where Γ
ME

,Γ
EM

denote the relevant DGFs with the singular term neglected; in
particular, the diagonal of the second term on the LHS vanishes.

Discretization

Mc = v

M = M(1) −M(2)

M
(1)
αβ =

1

2

(
(µ1 + µ2)〈bα,bβ〉 0

0 (ε1 + ε2)〈bα,bβ〉

)
M

(2)
αβ =

(
−ik1µ1〈bα, n̂×C1bβ〉+ ik2µ2〈bα, n̂×C2bβ〉 i µ1k1

Z0Z1
〈bα, n̂×G1bβ〉 − i µ2k2

Z0Z2
〈bα, n̂×G2bβ〉

ik1Z0Z1ε1〈bα, n̂×G1bβ〉 − ik2Z0Z2ε2〈bα, n̂×G1bβ〉 +ik1µ1〈bα, n̂×C1bβ〉 − ik2µ2〈bα, n̂×C2bβ〉

)
5.1.4 Modifications for nonzero surface impedance

PEC bodies

In the presence of a nonzero surface impedance Zs(x) > 0 (corresponding to a
finite surface conductivity Gs(x) = 1

Zs(x)
< ∞), equation (10) is modified to

read

n̂×Etotal(x) =
1

Gs(x)
n̂×K(x) (21)

where K(x) is the (unknown) electric surface current at x.
Note that we use the symbol G, not σ, for surface conductivity, because

this quantity has the dimensions of a conductance (current/voltage), not the
dimensions of a conductivity [current/(voltage·length)].

Dielectric bodies, PMCHWT Formulation

In the presence of a nonvanishing surface impedance Zs(x) (corresponding to a
finite surface conductivity, Gs(x) = 1

Zs(x)
<∞), the E-field continuity equation
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[the first of equations (15)] is unchanged, while the H-field continuity equation
is modified to read

lim
η→0

n̂×
[
Htotal(x + ηn̂)−Htotal(x− ηn̂)

]
= G(x)Etotal(x) (22a)

= −G(x)n̂×N(x) (22b)

is the (unknown) magnetic surface current at x.
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6 Introduction of the −Z0 Prefactor in the Mag-
netic Current Expansion

In rough schematic form, the equations derived in the previous section take the
form (

ΓEE ΓEM

ΓME ΓMM

)
∗
(

K
N

)
= −

(
Einc

Hinc

)
where ∗ denotes a convolution operation.

The matrix kernel on the LHS is not symmetric because ΓEM = −ΓME. To
remedy this, I (a) scale the magnetic current by −1/Z0, and then (b) divide
the upper row of the system by Z0 to obtain the following symmetric system6:

1

Z0
ΓEE −ΓEM

ΓME −Z0Γ
MM

 ∗
 K

− 1

Z0
N

 = −


1

Z0
Einc

Hinc

 (23)

Equation (23) is the actual linear system solved by libscuff.

6L. N. Medgyesi-Mitschang, J. M. Putnam, and M. B. Gedera, “Generalized method of
moments for three-dimensional penetrable scatterers,” J. Opt. Soc. Am. A, vol. 11, no. 4,
pp. 1383–1398, Apr 1994.
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7 The Equations Solved by libscuff: Discrete
Forms

Discretization Procedure

libscuff uses a two-step procedure to discretize the integral equations derived
in the previous sections. Briefly, we approximate the K and N surface-current
distributions as expansions in RWG basis functions, then Galerkin-test the re-
sulting equations again with the RWG basis functions.

In more detail,

1. First, libscuff approximates surface currents as expansions in RWG basis
functions.

For electric currents on the surfaces of PEC objects, we have the expansion

K(x) ≈
∑

Kαnfαn(x) (24a)

where α runs over all PEC objects in the geometry and n runs over all
RWG basis functions on object Oα.

For electric and magnetic currents on the surfaces of dielectric objects, we
have the expansions

K(x) ≈
∑

Kβnfβn(x), N(x) ≈ −Z0

∑
Nβnfβn(x) (24b)

where β runs over all PEC objects in the geometry and n runs over all
RWG basis functions on object Oβ . (The rationale for the prefactor −Z0

was explained in the previous section).

2. Second, libscuff obtains one equation for each of the unknown K and N
coefficients in (24) by proceeding as follows.

First, we take the inner product of equation (??) with each RWG basis
function fαn defined on the surface of each PEC object. This gives us one
equation for each of the Kαn coefficients in (24a).

Second, we take the inner product of equation (??) with each RWG basis
function fβn defined on the surface of each dielectric object. We associate
the resulting equation with the coefficient Kβn in (24b). Then, we take the
inner product of the magnetic analogue of (??) (which, as stated above, is
identical to (??) with the replacements {ΓEE,ΓEM} → {ΓME,ΓMM}) with
fβn) and associate the resulting equation with the coefficient Nβn in (24b).

Discretized Version of Equation (??)

We consider again the setting of Figure ??: We have a PEC object Oβ , em-
bedded in an object Oα (which may be the environment Oe); also embedded
in Oα are additional PEC object(s) Oβ′ and dielectric object(s) Oγ . Inserting
expansions (24) into (??) and Galerkin-testing with a basis function fβm on
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the surface of Oβ yields (after dividing both sides of the equation by Z0 as per
equation (23):

NEdges(β)∑
n=1

〈
fβm

∣∣∣ 1

Z0
ΓEE(α)

∣∣∣fβn〉Kβn

+

NEdges(β′)∑
n=1

〈
fβm

∣∣∣ 1

Z0
ΓEE(α)

∣∣∣fβ′n

〉
Kβ′n

+

NEdges(γ)∑
n=1

{〈
fβm

∣∣∣ 1

Z0
ΓEE(α)

∣∣∣fγn〉Kγn −
〈
fβm

∣∣∣ΓEM(α)
∣∣∣fγn〉Nγn}

−
NEdges(α)∑
n=1

{〈
fβm

∣∣∣ 1

Z0
ΓEE(α)

∣∣∣fαn〉Kαn −
〈
fβm

∣∣∣ΓEM(α)
∣∣∣fαn〉Nαn}

= − 1

Z0
χinc
α

〈
fβm

∣∣∣Einc
〉
. (25)

Discretized Version of Equation (??) and its Magnetic Analogue

Again in the setting of Figure ??, we Galerkin-test equation (??) with a basis
function fγm on the surface of object Oγ to find (again, dividing through by Z0

as per (23)):

NEdges(γ)∑
n=1

{〈
fγm

∣∣∣ 1

Z0
ΓEE(α) +

1

Z0
ΓEE(γ)

∣∣∣fγn〉Kγn −
〈
fγm

∣∣∣ΓEM(α) + ΓEM(γ)
∣∣∣fγn〉Nγn}

NEdges(γ′)∑
n=1

{〈
fγm

∣∣∣ 1

Z0
ΓEE(α)

∣∣∣fγ′n

〉
Kγ′n −

〈
fγm

∣∣∣ΓEM(α)
∣∣∣fγ′n

〉
Nγ′n

}

+

NEdges(β)∑
n=1

〈
fγm

∣∣∣ 1

Z0
ΓEE(α)

∣∣∣fβn〉Kβn

−
NEdges(α)∑
n=1

{〈
fγm

∣∣∣ 1

Z0
ΓEE(α)

∣∣∣fαn〉Kαn −
〈
fγm

∣∣∣ΓEM(α)
∣∣∣fαn〉Nαn}

−
NEdges(δ)∑
n=1

{〈
fγm

∣∣∣ 1

Z0
ΓEE(γ)

∣∣∣fδn〉Kδn −
〈
fγm

∣∣∣ΓEM(γ)
∣∣∣fδn〉Nδn}

=
1

Z0

[
χinc
γ − χinc

α

]〈
fγm

∣∣∣Einc
〉
. (26a)
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Discretized Version of the Magnetic Analogue of Equation (??)

Finally,, we Galerkin-test the magnetic-field analogue of (??) to find

NEdges(γ)∑
n=1

{〈
fγm

∣∣∣ΓME(α) + ΓME(γ)
∣∣∣fγn〉Kγn −

〈
fγm

∣∣∣Z0Γ
MM(α) + Z0Γ

MM(γ)
∣∣∣fγn〉Nγn}

NEdges(γ′)∑
n=1

{〈
fγm

∣∣∣ΓME(α)
∣∣∣fγ′n

〉
Kγ′n −

〈
fγm

∣∣∣Z0Γ
MM(α)

∣∣∣fγ′n

〉
Nγ′n

}

+

NEdges(β)∑
n=1

〈
fγm

∣∣∣ΓME(α)
∣∣∣fβn〉Kβn

−
NEdges(α)∑
n=1

{〈
fγm

∣∣∣ΓME(α)
∣∣∣fαn〉Kαn −

〈
fγm

∣∣∣Z0Γ
MM(α)

∣∣∣fαn〉Nαn}

−
NEdges(δ)∑
n=1

{〈
fγm

∣∣∣ΓME(γ)
∣∣∣fδn〉Kδn −

〈
fγm

∣∣∣Z0Γ
MM(γ)

∣∣∣fδn〉Nδn}
=
[
χinc
γ − χinc

α

]〈
fγm

∣∣∣Hinc
〉
. (26b)
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8 Structure of the BEM System

The discretization procedure of the previous section results in a linear system
of the form [

M
]
·
[
KN

]
=
[
RHS

]
(27)

where the vector
[
KN

]
contains the unknown K and N coefficients from equa-

tion (24), the matrix
[
M
]

is the “BEM matrix,” and the right-hand-side vector[
RHS

]
depends on the incident fields.

In the remainder of this section we will describe the structure of each of the
entities in equation (27).

8.1 Structure of the coefficient vector

The KN vector contains the K and N coefficients in (24), ordered as follows:

1. All coefficients for object O1 come first, followed by all coefficients for
object O2, etc.

(Object indices correspond with the order in which the objects were spec-
ified in the .rwggeo file used as input to libscuff.)

2. Within the portion of the vector corresponding to a dielectric object, the
electric and magnetic coefficients for the first RWG basis function come
first, followed by the electric and magnetic coefficients for the second RWG
basis function, etc.

Thus, for a geometry consisting of object O1 (PEC) with M interior edges
in its surface discretization and object O2 (dielectric) with N interior edges in
its surface discretization, the KN vector has dimension M + 2N and looks like

KN =



K11

K12

...
K1M

K21

N21

...
K2N

N2N


.

To compute the index of any given coefficient Kαn or Nαn within the KN
vector, it is useful first to define functions NBF(α) and BFIndexOffset(α). The
former of these is just the number of basis functions on object α, i.e.

NBF(α) =

{
NEdges(α), if object Oα is PEC

2 · NEdges(α), if object Oα is dielectric.
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(Here NEdges(α) is the number of interior edges in the surface discretization of
object Oα.)

The function BFIndexOffset(α) is the index within the KN vector of the
first coefficient corresponding to object Oα; thus

BFIndexOffset(1) = 1

BFIndexOffset(2) = 1 + NBF(1)

BFIndexOffset(3) = 1 + NBF(1) + NBF(2)

et cetera.
Then I can write the following relations for the indices with the KN vector

of individual K,N coefficients. (Note that these are one-based indices, which
must be translated into zero-based indices for use in C++ code.)

I(K,α, n) ≡ Index of coefficient Kαn within the KN vector

=

{
BFIndexOffset(α) + n− 1, if Oα is PEC

BFIndexOffset(α) + 2(n− 1), if Oα is dielectric

I(N,α, n) ≡ Index of coefficient Nαn within the KN vector

= BFIndexOffset(α) + 2(n− 1) + 1.

8.2 Structure of the RHS vector

The structure of the RHS vector mirrors the structure of the coefficient vector:

• If the nth element of the coefficient vector is a K coefficient (i.e. the
electric surface-current expansion coefficient associated with some RWG
basis function b), then the nth element of the RHS vector is minus the
inner product of the incident electric field with b, divided by Z0.

• If the nth element of the coefficient vector is an N coefficient (i.e. the
magnetic surface-current expansion coefficient associated with some RWG
basis function b), then the nth element of the RHS vector is minus the
inner product of the incident magnetic field with b.

For the example considered above, consisting of a PEC surface with M
interior edges and a dielectric surface with N interior edges, the elements of the
RHS vector would be
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RHS = −



〈Einc,b11〉/Z0

〈Einc,b12〉/Z0

...

〈Einc,b1M 〉/Z0

〈Einc,b21〉/Z0

〈Hinc,b21〉
〈Einc,b22〉/Z0

...

〈Hinc,b2N 〉



.

8.3 Structure of the BEM matrix

Consider two basis functions: fαm, corresponding to the mth interior edge of
object Oα, and fβn, corresponding to the nth interior edge of object Oβ .

Let A be the index of the medium through which the objects interact. (If
we have NObj objects in our geometry, then either 1 ≤ A ≤ NObj or else A = e
for the external medium.) Thus,

• If Oα is contained in Oβ , then A = β.

• If Oβ is contained in Oα, then A = α.

• If Oα and Oα are both contained in the same object Oγ (which may be
the external medium Oe), then then A = γ.

• If none of the above are true, then the two objects do not interact and the
corresponding block of the BEM matrix is zero.

Define a symbol Sign to have value −1 in the first two cases (i.e. when one
of Oα, Oβ is contained inside the other), while Sign = +1 otherwise.

Then the two basis elements contribute a 1× 1, 1× 2, 2× 1, or 2× 2 block
of matrix elements to the BEM matrix, which may be determined by looking at
equations (25) and (26) as follows:

1. Both objects are PEC:

M
(
IKαm, IKβn

)
=

1

Z0

〈
fαm

∣∣∣ΓEE(A)
∣∣∣fβn〉 = ikAZA

〈
fαm

∣∣∣G(kA)
∣∣∣fβn〉

2. Oα is PEC, Oβ is dielectric:

M
(
IKαm, IKβn

)
=

Sign

Z0

〈
fαm

∣∣∣ΓEE(A)
∣∣∣fβn〉 = Sign · ikAZA

〈
fαm

∣∣∣G(kA)
∣∣∣fβn〉

M
(
IKαm, INβn

)
= −Sign ·

〈
fαm

∣∣∣ΓEM(A)
∣∣∣fβn〉 = −Sign · ikA

〈
fαm

∣∣∣C(kA)
∣∣∣fβn〉
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3. Oα is dielectric, Oβ is PEC:

M
(
IKαm, IKβn

)
=

Sign

Z0

〈
fαm

∣∣∣ΓEE(A)
∣∣∣fβn〉 = Sign · ikAZA

〈
fαm

∣∣∣G(kA)
∣∣∣fβn〉

M
(
INαm, IKβn

)
= Sign ·

〈
fαm

∣∣∣ΓME(A)
∣∣∣fβn〉 = −Sign · ikA

〈
fαm

∣∣∣C(kA)
∣∣∣fβn〉

4. Oα,Oβ are both dielectric and Oα 6= Oβ:

M
(
IKαm, IKβn

)
=

Sign

Z0

〈
fαm

∣∣∣ΓEE(A)
∣∣∣fβn〉 = Sign · ikAZA

〈
fαm

∣∣∣G(kA)
∣∣∣fβn〉

M
(
IKαm, INβn

)
= −Sign ·

〈
fαm

∣∣∣ΓEM(A)
∣∣∣fβn〉 = −Sign · ikA

〈
fαm

∣∣∣C(kA)
∣∣∣fβn〉

M
(
INαm, IKβn

)
= Sign ·

〈
fαm

∣∣∣ΓME(A)
∣∣∣fβn〉 = −Sign · ikA

〈
fαm

∣∣∣C(kA)
∣∣∣fβn〉

M
(
INαm, INβn

)
= −Sign · Z0

〈
fαm

∣∣∣ΓMM(A)
∣∣∣fβn〉 = −Sign · ik

A

ZA

〈
fαm

∣∣∣G(kA)
∣∣∣fβn〉

5. Oα,Oβ are both dielectric and Oα = Oβ:

This case is identical to the previous case, but now the matrix elements
are augmented by additional contributions describing the basis functions
interacting through the medium inside the object. Let the index of this
medium be B. (We have B = α = β.) Then the matrix elements are

M
(
IKαm, IKβn

)
=

1

Z0

〈
fαm

∣∣∣ΓEE(A) + ΓEE(B)
∣∣∣fβn〉

= ikAZA

〈
fαm

∣∣∣G(kA)
∣∣∣fβn〉+ ikBZB

〈
fαm

∣∣∣G(kB)
∣∣∣fβn〉

M
(
IKαm, INβn

)
= −

〈
fαm

∣∣∣ΓEM(A) + ΓEM(B)
∣∣∣fβn〉

= −ikA

〈
fαm

∣∣∣C(kA)
∣∣∣fβn〉− ikB

〈
fαm

∣∣∣C(kB)
∣∣∣fβn〉

M
(
INαm, IKβn

)
=
〈
fαm

∣∣∣ΓME(A) + ΓME(B)
∣∣∣fβn〉

= −ikA

〈
fαm

∣∣∣C(kA)
∣∣∣fβn〉− ikB

〈
fαm

∣∣∣C(kB)
∣∣∣fβn〉

M
(
INαm, INβn

)
= −

〈
fαm

∣∣∣ΓMM(A) + ΓMM(B)
∣∣∣fβn〉

= − ik
A

ZA

〈
fαm

∣∣∣G(kA)
∣∣∣fβn〉− ikB

ZB

〈
fαm

∣∣∣G(kB)
∣∣∣fβn〉.
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9 Evaluation of 2D Integrals over RWG Basis
Functions

The E and H fields due to an electric current distribution described by a single
unit-strength RWG basis function fa(x) are

E(x) = ikZ

〈
G(x,x′)

∣∣∣∣fa(x′)

〉
(28)

H(x) = −ik
〈

C(x,x′)

∣∣∣∣fa(x′)

〉
. (29)

The fields of a magnetic current distribution described by the same basis func-
tion are

E(x) = +ik

〈
C(x,x′)

∣∣∣∣fa(x′)

〉
(30)

H(x) =
ik

Z

〈
C(x,x′)

∣∣∣∣fa(x′)

〉
. (31)
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10 Evaluation of 4D Integrals over RWG Basis
Functions

As demonstrated above, the elements of the BEM matrix involve integrals over
pairs of RWG basis functions of the form〈

fa

∣∣∣G(k)
∣∣∣fb〉 ≡ ∫

sup fa

dxa

∫
sup fb

dxb fa(xa) ·G(k,xa − xb) · fb(xb) (32a)〈
fa

∣∣∣C(k)
∣∣∣fb〉 ≡ ∫

sup fa

dxa

∫
sup fb

dxb fa(xa) ·C(k,xa − xb) · fb(xb). (32b)

libscuff computes these integrals using one of two strategies depending on
how far apart the basis functions are from one another. To quantify this, let
dab be the distance between the centroids of basis functions fa and fb, and let
Rmax = max(Ra, Rb) be the larger of the radii of the two basis functions. (The
“radius” of a compact source distribution is the radius of the smallest sphere in
which the source distribution may be enclosed. For RWG basis functions, we
take the centroid to be the midpoint of the common edge shared by the two
triangle that define the basis function; then the radius is the greatest distance
from the centroid to any of the four panel vertices (Figure ??).)

Then the computation of the integrals (32) proceeds as follows.

1. When dab > DBFTHRESHOLD ·Rmax, we approximate (32) using a spherical-
multipole expansion. (Here DBFThreshold, the “distant basis-function
threshold,” is a dimensionless number that must be tuned to yield optimal
accuracy and performance; in libscuff its value is set to 8.3.)

2. Otherwise, we compute (32) as a sum of four numerically-evaluated inte-
grals over pairs of triangular panels.

Each of these methods is described in the following sections.

10.1 Matrix elements between distant basis functions: spher-
ical multipole method

The spherical multipole method is based on the spherical-multipole expansion
of the G and C dyadics:

G(x,x′) = −ik
∑
α

{
M̂α(x̂)M̌∗(x̌)− N̂α(x̂)Ň∗(x̌)

}
C(x,x′) = −ik

∑
α

{
M̂α(x̂)Ň∗(x̌) + N̂α(x̂)M̌∗(x̌)

}
where x̂(x̌) denote whichever of x,x′ is closer to (further from) the origin.
(My notation and conventions for spherical multipole functions are summarized
in Appendix ??; briefly, the ∧ adornment means “interior,” while ∨ means
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“exterior,” and the mnemonic is to think of ∨ as indicating radiation outward
to infinity, as is appropriate for exterior solutions).

Inserting into (32), we have〈
fa
∣∣G∣∣fb〉 = −ik

∑
α

{〈
fa
∣∣M̂α

〉〈
M̌∗

α

∣∣fb〉− 〈fa∣∣N̂α

〉〈
Ň∗α
∣∣fb〉}〈

fa
∣∣C∣∣fb〉 = −ik

∑
α

{〈
fa
∣∣M̂α

〉〈
Ň∗α
∣∣fb〉+

〈
fa
∣∣N̂α

〉〈
M̌∗

α

∣∣fb〉}
Now use the translation matrices [Appendix ??, equation (??)] to rewrite

inner products involving exterior functions in terms of inner products involving
interior functions:

〈
fa
∣∣G∣∣fb〉 = −ik

∑
αβ

(
Maα

Naα

)T (
Aαβ Bαβ

Bαβ −Aαβ

)(
Mbα

Nbα

)
(33a)

〈
fa
∣∣C∣∣fb〉 = −ik

∑
αβ

(
Maα

Naα

)T (
−Bαβ Aαβ

Aαβ Bαβ

)(
Mbα

Nbα

)
(33b)

where {M,N} are the spherical multipole moments of the RWG basis functions:

Maα =

∫
sup fa

fa(x) · M̂α(x) dx, Naα =

∫
sup fa

fa(x) · N̂α(x) dx. (34)

The point of this decomposition is that computing the integrals (34) at a given
frequency requires O(NBF) numerical cubatures, in contrast to the O(NBF2) nu-
merical cubatures that would näıvely be required to evaluate (32) for all pairs
of basis functions.

10.2 Matrix elements between nearby basis functions: panel-
panel integration method

When the supports of the basis functions fa and fb are relatively close to each
other, we evaluate each of the integrals in (32) as a sum of four integrals over
pairs of triangular panels:〈
fa

∣∣∣G(k)
∣∣∣fb〉

= lalb

+∑
σ,τ=−

στ

4AσaA
τ
b

∫
Pσa

dxa

∫
Pτb
dxb

[
h•(xa,xb)−

1

k2
h∇(xa,xb)

]
φ
(
k, |xa − xb|

)
(35a)〈

fa

∣∣∣C(k)
∣∣∣fb〉

=
lalb
ik

+∑
σ,τ=−

στ

4AσaA
τ
b

∫
Pσa

dxa

∫
Pτb
dxb h×(xa,xb)ψ

(
k, |xa − xb|

)
(35b)
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where7

h•(xa,xb) = (xa −Qa) · (xb −Qb)

h∇(xa,xb) = 4

h×(xa,xb) =
[
(xa −Qa)× (xb −Qb)

]
· (xa − xb)

= (xa × xb) · (Qa −Qb) + (Qa ×Qb) · (xa − xb)

φ(k, r) =
eikr

4πr
,

ψ(k, r) = (ikr − 1)
eikr

4πr3
.

[Note that ψ is defined such that ∇φ(k, |r|) = rψ(k, |r|)].
The point of this notation is that it expresses the integrands of the panel-

panel integrals in (35) as products of benign polynomials in xa,xb (the h func-
tions) times kernel functions that depend only on the distance xa−xb and have
singularities when this distance vanishes (the φ, ψ kernels). This decomposition
facilitates the desingularization procedure described below.

In some cases I will write (35) using the notation〈
fa

∣∣∣G(k)
∣∣∣fb〉 = lalb

+∑
σ,τ=−

στ

{
PPI
(
Pσa ,Pτb , h•, φ

)
− 1

k2
PPI
(
Pσa ,Pτb , h∇, φ

)}
(36a)〈

fa

∣∣∣C(k)
∣∣∣fb〉 =

lalb
ik

+∑
σ,τ=−

στ · PPI
(
Pσa ,Pτb , h×, ψ

)
(36b)

with the “panel-panel integral” functions defined by

PPI
(
P,P ′, h, g

)
≡ 1

4AA′

∫
P
dx

∫
P′
dx′ h(x,x′) g(|x− x′|). (37)

The quantities (37) are what are computed by the GetPanelPanelInteractions()
routine in libscuff. The responsibility of assembling these quantities together
with the requisite prefactors to obtain the full inner products (36) is handled
by the routine GetEdgeEdgeInteractions().

Evaluation of distant panel-panel integrals: Cubature

When the panels P,P ′ in (37) are relative far away from each other, we evaluate
the four-dimensional integral using numerical cubature. For this purpose it is
convenient to parameterize points in the triangles using the prescription (Figure
??)

x = V1 + uA + vB, 0 ≤ u ≤ 1, 0 ≤ v ≤ u

x′ = V′1 + u′A′ + v′B′ 0 ≤ u′ ≤ 1, 0 ≤ v′ ≤ u′.
(38)

7Warning: My notation for the h functions hides the fact that h• and h× depend on the
current source/sink nodes Q±

ab within the two triangles.
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The integral (37) becomes

PPI
(
P,P ′, h, g

)
=

∫ 1

0

du

∫ u

0

dv

∫ 1

0

du′
∫ u′

0

dv′ h(u, v, u′, v′)g(u, v, u′, v′)

(39)
where the prefactor 1

4AA′ is cancelled by the Jacobian of the variable transfor-
mation (38), and where I put

h(u, v, u′, v′) = h
(
x(u, v),x′(u′, v′)

)
, g(u, v, u′, v′) = g

(∣∣x(u, v)−x′(u′, v′)
∣∣).

The integral (39) may be evaluated numerically in one of two ways:

1. by nesting two cubature rules for the standard triangle with vertices
{(0, 0), (0, 1), (1, 0)}, or

2. by mapping the domain of integration to the four-dimensional hypercube
[0, 1]× [0, 1]× [0, 1]× [0, 1] and using a four-dimensional cubature rule for
this hypercube. (The variable transformation that enables this mapping
is

v = ut, dv = udt,

∫ u

0

f(v)dv =

∫ 1

0

uf(ut)dt

and similarly v′ = u′t′.)

The former of these two strategies is slightly more efficient, but the latter has
the advantage of allowing the use of standard codes for adaptive cubature over
hypercubes.8 Both strategies are used in libscuff.

Evaluation of nearby panel-panel integrals: Desingularization

When the panels in (37) have one or more common vertices, the integrand
becomes singular at one or more points in the domain of integration. Although
these are integrable singularities, their existence precludes application of the
näıve numerical cubature scheme discussed above, and instead we must resort
to more complicated, and more costly, numerical methods.

On the other hand, when the panels have no common vertices but are nearby
one another, the integrand in (37) is nonsingular but rapidly varying over the
domain of integration, and evaluation of the integral by numerical cubature is
technically possible but expensive due to the large number of cubature points
required to obtain decent accuracy.

∫∫
hφ =

∫∫
hφDS +

3∑
n=0

(ik)n

4π
An

∫∫
hrn−1 (40a)

∫∫
hψ =

∫∫
hψDS +

4∑
n=0

(ik)n

4π
Bn

∫∫
hrn−3 (40b)

Here we are using a shorthand in which

8http://ab-initio.mit.edu/cubature
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• h is any of the functions {h•, h∇, h×},

•
∫∫

is shorthand for
∫
Pa dxa

∫
Pb dxb,

•
∫∫

hrp is shorthand for
∫
Pa dxa

∫
Pb dxb

{
h(xa,xb)|xa − xb|p

}
,

• the A coefficients in (40a) are

An =
1

n!

• the B coefficients in (40b) are

B0 = −1, B1 = 0, B2 =
1

2
, B3 =

1

3
, B4 =

1

6

• the desingularized kernels are

φDS(k, r) =
eikr − 1− ikr − 1

2 (ikr)2 − 1
6 (ikr)3

4πr
,

≡ ExpRel(ikr, 4)

4πr
(41a)

and similarly

ψDS(k, r) ≡ (ikr − 1)
ExpRel(ikr, 4)

4πr3
. (41b)

When computing the “relative exponential” functions ExpRel(x, n) in (41) it
is important that we not simply compute exp(x) and then subtract off the
first n terms in its Taylor series, as doing so could lead to catastrophic loss of
numerical precision. Instead, a better-behaved procedure is simply to sum the
Taylor series for the exponential starting with its (n+ 1)th term.
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11 Evaluation of Frequency-Independent Panel-
Panel Integrals

The frequency-independent panel-panel integrals (FIPPIs) are∫∫
h•r

p,

∫∫
h∇r

p,

∫∫
h×r

p (42)

where
∫∫

denotes the four-dimensional integration over the pair of triangles as
in the previous section.

Evaluation of
∫∫

h•r
p

In terms of the u, v, u′, v′ variables of equation (38), we have

h•(u, v, u
′, v′) =

[(
V1 −Q

)
+ uA + vB

]
·
[(

V′1 −Q′
)

+ u′A′ + v′B′
]

(43)

and
r(u, v, u′, v′) =

∣∣∣V1 −V′1 + uA + vB− u′A′ − v′B′
∣∣∣.

Expanding the product (43) yields a sum of nine terms:∫∫
h•r

p =
(
V1 −Q

)
·
(
V′1 −Q′

)
·
∫∫

rp

+A ·
(
V′1 −Q′

) ∫∫
urp

+B ·
(
V′1 −Q′

) ∫∫
vrp

+ · · ·

+B ·B′
∫∫

vv′rp. (44)

It is important to notice that the integrals in (44) are independent of Q and Q′.
This suggests that, to compute

∫∫
h•r

p, I first compute the quantities

∫∫



1

u

v

u′

uu′

vu′

v′

uv′

vv′



rp (45)
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and then use (44) to compute
∫∫

h•r
p. The point of this step is that the quan-

tities (45) need only be evaluated and stored once for each pair of panels, after
which the results may be used in (44) to compute the nine separate quantities∫∫

h•r
p that result different choices of the current source/sink vertices Q,Q′.

The integrals (44) are known in libscuff as the “Q-independent FIPPIs,”
while (42) are the “Q-dependent FIPPIs.”

Evaluation of
∫∫

h∇r
p

Once we have evaluated the Q-independent FIPPIs for a pair of panels, we get∫∫
h∇r

p for free, since it is just the first entry in equation (45) times 4.

Evaluation of
∫∫

h×r
p

For p > −3, I proceed in analogy to equation (44) by writing h× as a sum of
nine terms,

h× =
∑
abcd

uavbu′cv′dhabcd× ,

whereupon
∫∫

h×r
p may be reconstructed from the QIFIPPIs (45) according to∫∫

h×r
p =

∑
abcd

habcd×

∫∫ [
uavbu′cv′d

]
rp. (46)

The nonzero values of habcd× are

h0000× = (Qa ×Qb) · (V0 −V′0) + (Qa −Qb) · (V0 ×V′0)

h1000× = (Qa ×Qb) ·A + (Qa −Qb) · (A×V′0)

h0100× = (Qa ×Qb) ·B + (Qa −Qb) · (B×V′0)

h0010× = −(Qa ×Qb) ·A′ + (Qa −Qb) · (V0 ×A′)

h0001× = −(Qa ×Qb) ·B′ + (Qa −Qb) · (V0 ×B′)

h1010× = (Qa −Qb) · (A×A′)

h1001× = (Qa −Qb) · (A×B′)

h0110× = (Qa −Qb) · (B×A′)

h0101× = (Qa −Qb) · (B×B′).

For the particular case p = −3, the above procedure is ill-behaved, and instead
I write∫∫

h×r
−3 = (Qa×Qb) ·

∫∫
(xa−xb)r

−3 + (Qa−Qb) ·
∫∫

(xa×xb)r
−3 (47)

where now ∫∫
(xa − xb)r

−3,

∫∫
(xa × xb)r

−3 (48)
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are to be included among the list of Q−independent FIPPIs that must be cal-
culated for each panel pair.

On first glance, it might seem that equations (45) and (48) are redundant,
since knowing the former should allow reconstruction of the latter. This ap-
pearance is deceptive, because for panel pairs with common vertices some of
the individual FIPPIs (45) are divergent for p = −3, while (48) are convergent.
[For panel pairs with no common vertices, the integrals (45) are convergent
but much more expensive to calculate than (48).] Of course, for p = −3 the
Q−independent FIPPIs defined by (48) are the only ones we need (because for
p = −3 the only Q-dependent FIPPI we need is

∫∫
h×r

p), while for p > −3
equation (48) does not suffice and we need instead the full set (45). Thus a
reasonable compromise seems to be to compute only (48) for the case p = −3,
and to compute the full set (45) for p > −3.

Evaluation of Q-independent FIPPIs

The Q-independent FIPPIs, equation (45), are nominally four-dimensional in-
tegrals, but we have the following simplifications:

1. For p = 0 the integral may be done analytically in closed form. (Actually,
the same is true for p = 2, but the result is too cumbersome to be useful.)

2. If the panels have one or more common vertices, we may use the Taylor-
Duffy method (Appendix ??) to perform one or more of the four integrals
analytically.

3. Even when the panels have no common vertices, we can always evaluate
one of the four integrals analytically, which accelerates numerical evalua-
tion.

We now address each of these points in turn.

1. FIPPIs for p = 0. In this case all the FIPPIs are linear combinations of
the basic integral∫∫

uavb(u′)c(v′)d =
1

(2 + a+ b)(1 + b)(2 + c+ d)(1 + d)
.
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We have

∫∫



1

u

v

u′

uu′

vu′

v′

uv′

vv′



r0 =



1/4

1/6

1/12

1/6

1/9

1/18

1/12

1/18

1/36



.

2. FIPPIs for panels with common vertices. As noted above, for panels
with common vertices the Taylor-Duffy method of Appendix (??) is available.

3. FIPPIs for panels with no common vertices. As noted above, even
when the panels have no common vertices we can always evaluate one of the four
integrals analytically to yield a three-dimensional integral. We arbitrarily choose
the integral we evaluate to be the v′ integral, and to facilitate its evaluation we
write

r(u, v, u′, v′) =
∣∣∣V1 −V′1 + uA + vB− u′A′ − v′B′

∣∣∣
= a

√
(v′ + v′0)2 + b2,

a = |B′|, v′0 = − 1

a2
B′ ·Y, b2 =

1

a2
|Y|2 − v′20 ,

Y = V1 −V′1 + uA + vB− u′A′.
The integrals we need are now∫ v′0+u

′

v′0

{
1

v′

}[
v′2 + b2

]−3/2
dv′ =

1

a3


(u′+v′0)
b2S2

− v′0
b2S1

1
S1
− 1

S2

 (49a)

∫ v′0+u
′

v′0

{
1

v′

}[
v′2 + b2

]−1/2
dv′ =

1

a

 log
S2+(u′+v′0)
S1+v′0

S2 − S1

 (49b)

∫ v′0+u
′

v′0

{
1

v′

}[
v′2 + b2

]1/2
dv′ = a


b2

2 log
S2+(u′+v′0)
S1+v′0

+ 1
2

[
(u′ + v′0)S2 − v′0S1

]
1
3 (S3

2 − S3
1)


(49c)

∫ v′0+u
′

v′0

{
1

v′

}[
v′2 + b2

]
dv′ = a2

{ }
(49d)
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S1 ≡
√
b2 + v′20 , S2 ≡

√
b+ (v′0 + u′)2,

To make use of these results in evaluating the FIPPIs (45), we eliminate the
v′ integrals and replace all factors of {1, v′} with their counterparts on the
RHS of (49), leaving behind three-dimensional integrals that succumb readily
to numerical cubature.
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12 Derivatives of Matrix Elements

For Casimir computations we need derivatives of matrix elements with respect
to rigid displacements and rotations of basis functions.

12.1 Derivatives by Spherical-Multipole Method

12.2 Derivatives by Panel-Panel Integral Method

We write the panel-panel decomposition of the RWG inner products, equation
(36), in the form

〈
fa

∣∣∣G(k)
∣∣∣fb〉 = lalb

+∑
σ,τ=−

στ

{
H•(Pσa ,Pσb ,R)− 1

k2
H∇(Pσa ,Pσb ,R)

}
(50a)

〈
fa

∣∣∣C(k)
∣∣∣fb〉 =

lalb
ik

+∑
σ,τ=−

στ ·H×(Pσa ,Pσb ,R) (50b)

where

H•(Pa,Pb,R) =
1

4AaAb

∫
Pa
dya

∫
Pb
dyb h•(ya,yb)φ

(
k,R + ya − yb

)
(51a)

H∇(Pa,Pb,R) =
1

4AaAb

∫
Pa
dya

∫
Pb
dyb h∇(ya,yb)φ

(
k,R + ya − yb

)
(51b)

H×(Pa,Pb,R) =
1

4AaAb

∫
Pa
dya

∫
Pb
dyb h×(ya,yb,R)ψ

(
k,R + ya − yb

)
.

(51c)

Here we have rewritten the integrals over xa,xb in equation (35) using new
integration variables defined relative to the panel centroids (Figure 6):

xa = xa0 + ya, xb = xb0 + yb, Rab ≡ R = xa0 − xb0. (52)

(In equation (51), note that h×, unlike h• and h∇, depends on R in addition
to ya,yb.)

Now we can take derivatives with respect to the components of R. Putting
r = R + ya − yb), we have

∂H•
∂Ri

=

∫
dya

∫
dyb rih•(ya,yb)ψ

(
k,R + ya − yb

)
∂H∇
∂Ri

=

∫
dya

∫
dyb rih∇(ya,yb)ψ

(
k,R + ya − yb

)
∂H×
∂Ri

=

∫
dya

∫
dyb rih×(ya,yb,R)ζ

(
k,R + ya − yb

)
+

∫
dya

∫
dyb

∂h×(ya,yb,R)

∂Ri
ψ
(
k,R + ya − yb

)
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Figure 6: Notation for equation 52.

In the last line, we put

ζ(k, r) =
[
(ikr)2 − 3ikr + 3

] eikr
4πr5

[which is defined such that ∇ψ(k, |r|) = rζ(k, |r|)] and we have

∂h×(ya,yb,R)

∂Ri
=

∂

∂Ri

{[
(ya −Qa)× (yb −Qb)

]
·R
}

=
[
(ya −Qa)× (yb −Qb)

]
i
.
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Desingularization

∂H•
∂Ri

=

∫∫
rih•ψ

=

∫∫
rih•ψ

DS +

4∑
n=0

(ik)n

4π
Bn

∫∫
rih•r

n−3

∂H∇
∂Ri

=

∫∫
rih∇ψ

=

[∫∫
rih∇ψ

DS +

4∑
n=0

(ik)n

4π
Bn

∫∫
rih∇r

n−3

]

∂H×
∂Ri

=

∫∫
rih×ζ +

∫∫ (
∂h×
∂Ri

)
ψ

=

∫∫
rih×ζ

DS +

∫∫ (
∂h×
∂Ri

)
ψDS

+

[
5∑

n=0

(ik)n

4π
Cn

∫∫
rih×r

n−5

]
+

[
4∑

n=0

(ik)n

4π
Bn

∫∫ (
∂h×
∂Ri

)
rn−3

]

In the last line here we used

ζDS(k, r) =
[
(ikr)2 − 3ikr + 3

]ExpRel(ikr,4)
4πr5

and the Cn coefficients are

C0 = 3, C1 = 0, C2 = −1

2
, C3 = C4 = 0, C5 =

1

6
.
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Figure 7: Notation for computation of overlap integrals.

13 Other Panel Integrals

13.1 Overlap Integral

The overlap integral between two RWG basis functions is

Oαβ =
〈
fα

∣∣∣fβ〉 =

∫
sup fα ∩ sup fβ

fα(x) · fβ(x) dx.

If we think of Oαβ as the α, β element of a matrix O, then O is a very sparse
matrix, with at most 5 nonzero entries per row. Fix an interior edge Lα in a
triangular surface mesh and consider the basis function fα associated with this
edge. The only basis functions to have nonvanishing overlap with fα are (1) fα
itself, and (2) basis functions associated with the four edges beside Lα on the
two panels that share Lα, such as Lβ in Figure 7(a).

The case α 6= β. Consider first the case of inequal basis functions fα, fβ that
share a single panel P [Figure 7(a)]. We parameterize points within P according
to

x = Qα + uLβ + vLα, 0 ≤ u ≤ 1, 0 ≤ v ≤ u.
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On P, the two basis functions may be expressed in terms of this parameterization
as

fα(x) =
σαlα
2A

[
uLβ + vLα

]
fβ(x) =

σβlβ
2A

[
uLβ + vLα + (Qα −Qβ)

]
=
σβlβ
2A

[
(u− 1)Lβ + (v − 1)Lα

]
Here A is the area of P and σα = ±1 according as P is the positive or negative
panel associated with basis function fα (and similarly for σβ), and we used the
fact that Qα + Lβ + Lα = Qβ .

The overlap integral is

Oαβ =

∫
P

fα(x) · fβ(x) dx

=
σασβlαlβ

2A

∫ 1

0

du

∫ u

0

dv
[
uLβ + vLα

]
·
[
(u− 1)Lβ + (v − 1)Lα

]
= −σ

ασβlαlβ
24A

[
l2α + l2β + 3Lα · Lβ

]
(53)

The case α = β. In this case there are two panels that contribute [Figure
7(b)]. The contribution of P is∫

P
fα(x) · fα(x) dx =

l2α
2A

∫ 1

0

du

∫ u

0

dv
[
uLβ + vLα

]
·
[
uLβ + vLα

]
=

l2α
24A

[
3l2α + l2β + 3Lα · Lβ

]
.

Adding the contribution of P ′, the total overlap integral is

Oαα =
l2α
24

{
1

A

[
l2α + 3l2β + 3Lα · Lβ

]
+

1

A′

[
l2α + 3l′2β + 3Lα · L′β

]}
. (54)

13.2 Crossed Overlap Integral

The crossed overlap integral between two RWG basis functions is

O×αβ =
〈
fα

∣∣∣n̂× fβ

〉
=

∫
sup fα ∩ sup fβ

fα(x) ·
[
n̂(x)× fβ(x)

]
dx

where n̂(x) is the surface normal at x. (The direction of n̂ must be chosen
consistently; in libscuff this is done by placing one or more reference points
inside closed objects and choosing the surface normal to each panel to point
away from the nearest reference point.)
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O×αβ is only nonzero in the case of Figure 7(b). (In particular, the diagonal

element O×αα vanishes.) Proceeding in analogy to the computation leading to
equation (53), we find

O×αβ =

∫
P

fα(x) ·
[
n̂× fβ(x)

]
dx

=
σασβlαlβ

2A

∫ 1

0

du

∫ u

0

dv
[
uLβ + vLα

]
·
[
(u− 1)

(
n̂× Lβ

)
+ (v − 1)

(
n̂× Lα

)]
=
σασβlαlβ

12A

[
Lα · (n̂× Lβ)

]
=
σασβlαlβ

12A

[
n̂ ·
(
Lβ × Lα

)]
by cyclic permutation of the triple vector product. But the magnitude of the
cross product here is just n̂ times twice the panel area,

=
σασβlαlβ

12A

[
n̂ ·
(
± 2A n̂

)]
= ±σ

ασβlαlβ
6

. (55)

The ± sign is determined as follows: Suppose we start at vertex Qα and traverse
the vertices of P by following Lβ , then Lα. If in so doing we encounter the
vertices of P in the order (0, 1, 2) or a cyclic permutation thereof, then the
+ sign holds in (55); otherwise (i.e. if we encounter the vertices in the order
(0, 2, 1) or a cyclic permutation thereof) the − sign holds.

An easy way to determine this sign is to look at the indices within P of
vertices Qβ and Qα. Call these IP(Qβ) and IP(Qα), respectively; they are
integers defined modulo 3. Then the sign in (55) is

sign in equation (55) =

+, if IP(Qβ)− IP(Qα) ≡ 2 mod 3

−, if IP(Qβ)− IP(Qα) ≡ 1 mod 3.
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14 Spherical Multipole Moments

Definition of the Spherical Multipole Moments

Following Jackson and other authors, I define the electric and magnetic spherical
multipole moments of a localized source distribution to be the coefficients in a
spherical-wave expansion of the fields away from the source regions:

E(r) =
∑
`m

{
aM

`,mM̌`m(r) + aE

`,mŇ`m(r)
}

(56a)

H(r) =
1

Z

∑
`m

{
− aM

`,mŇ`m(r) + aN

`,mM̌`m(r)
}

(56b)

where Z is the wave impedance of the medium (Z = 377 Ω for vacuum). Note
that my aM

`,m, a
E

`,m coefficients are not normalized in quite the same way as
Jackson’s aM(l,m), aE(l,m) coefficients; the relationship is

aM

`,m = Z0aM(l,m), aE

`,m = Z0
i

k
aE(l,m)

Jackson gives expressions (equations 9.167-8) for computing the a coefficients
for given source distributions; however, these expressions are not convenient
for our purposes.9 Instead, in the following sections I outline an alternative
approach for recovering the a coefficients from known source distributions.

Expansion of the Dyadic Green’s Functions in Spherical
Helmholtz Solutions

This approach is based on the well-known spherical-wave expansion of the dyadic
Green’s functions of Section 3. [In the following expression, the ρ and σ sub-
scripts run over spherical vector components (r, θ, φ.)]

Gρσ(k; r− r′) = ik
∑
`m

{
M̌`mρ(k, r>)M̂∗`mσ(k, r<) + Ň`mρ(k, r>)N̂ ∗`mσ(k, r>)

}
(57a)

Cρσ(k; r− r′) = ik
∑
`m

{
Ň`mρ(k, r>)M̂∗`mσ(k, r<)− M̌`mρ(k, r>)N̂ ∗`mσ(k, r>)

}
(57b)

(Note: The expansion for C here assumes that |r| > |r′|. In the opposite case
in which |r| < |r′|, the above expression for C acquires a minus sign.)

9In particular, applying Jackson’s expressions directly would require evaluating integrals
over the quantity ∇·

[
r×fRWG(r)

]
, which vanishes in the interior of an RWG panel but makes

nonzero contributions at the edges. This complication makes Jackson’s expressions somewhat
unwieldy in our case, whereas the approach outlined above is computationally straightforward.
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Fields due to localized current distributions

Now consider the fields arising from localized surface electric and magnetic
current distributions K(x) and N(x) :

E(r) = ik

∫ {
ZG(k, r− r′) ·K(r′) + C(k, r− r′) ·N(r′)

}
dr′

H(r) = ik

∫ {
−C(k, r− r′) ·K(r′) +

1

Z
G(k, r− r′) ·N(r′)

}
dr′.

Insert the expansions (57) and assume that the field evaluation point will always
be further from the origin than the source current point:

E(r) = −k2
∑
`m

{
M̌`m(r) ·

[〈
M̂`m

∣∣∣∣ZK

〉
−
〈
N̂ `m

∣∣∣∣N〉]

+ Ň `m(r) ·
[〈

N̂ `m

∣∣∣∣ZK

〉
+

〈
M̂`m

∣∣∣∣N〉]
}

H(r) = − k
2

Z0

∑
`m

{
M̌`m(r) ·

[〈
N̂ `m

∣∣∣∣ZK

〉
+

〈
M̂`m

∣∣∣∣N〉]

+ Ň `m(r) ·
[
−
〈
M̂`m

∣∣∣∣ZK

〉
+

〈
N̂ `m

∣∣∣∣N〉]
}

Comparing (58) with the definitions (56) now allows us to read off the ex-
pressions for aE,M in terms of the source distributions K and N:

aM`,m = −k2
[〈

M̂`m

∣∣∣∣ZK

〉
−
〈
N̂ `m

∣∣∣∣N〉] (59a)

aE`,m = −k2
[〈

N̂ `m

∣∣∣∣ZK

〉
+

〈
M̂`m

∣∣∣∣N〉] (59b)
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15 Evaluation of the fields at panel centroids

It is useful to have expressions for the E and H fields at the centroids of the
triangular panels in the discretization of object surfaces. Of course, the solution
of the EFIE or PMCHW equations automatically gives us the tangential com-
ponents of the fields on the object surfaces, but to get the normal components
we must do a little more work.

Thus, consider the fields at a point lying a distance z above the centroid of
a panel in the direction of the outward-pointing panel normal. Let ρ = (x, y)
be the in-plane coordinate vector. The normal E−field is given by

Ez(z) =

∫
dρ
{

ΓEE

zx(ρ, z)Kx(ρ) + ΓEE

zy (ρ, z)Ky(ρ)
}

+

∫
dρ
{

ΓEM

zx (ρ, z)Nx(ρ) + ΓEM

zy (ρ, z)Ny(ρ)
}
. (60)

Anticipating that the final answers will involve the first derivatives of K and N
at the origin (i.e. the panel centroid), I write

Kx(ρ) = K(00)
x + xK(10)

x + yK(01)
x + xyK(11)

x + · · ·
Ky(ρ) = K(00)

y + xK(10)
y + yK(01)

y + xyK(11)
y + · · ·

(where K(pq) is short for |∂p+qK/∂px∂qy|ρ=0) and similarly for the components
of N. Also, the components of the Γ tensors that I will need are

ΓEE

zx = ikZzx
[
− 3 + 3ikr − (ikr)2

] eikr

4π(ik)2r5

ΓEE

zy = ikZzy
[
− 3 + 3ikr − (ikr)2

] eikr

4π(ik)2r5

ΓEM

zx = iky
[
− 1 + ikr

] eikr

4π(ik)r3

ΓEM

zy = −ikx
[
− 1 + ikr

] eikr

4π(ik)r3

where r =
√
ρ2 + z2 and k, Z are the wavenumber and wave impedance for the

medium in question. Now I insert everything into (60) and note that terms
linear in x and/or y vanish under the angular portion of the dρ integration:

∫
dρ



1

x

y

x2

xy

y2


= 2π

∫
ρdρ



1

0

0

ρ2/2

0

ρ2/2


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This yields

Ez(z) =
Z
(
K

(10)
x +K

(01)
y

)
4ik

· z ·
∫ ∞
0

ρ3dρ
[
− 3 + 3ikr − (ikr)2

]eikr
r5

+

(
N

(01)
x −N (10)

y

)
4

∫ ∞
0

ρ3dρ
[
− 1 + ikr]

eikr

r3
.

The prefactor in the second term here involves the z component of the curl of
the magnetic current, ∇×N; but the curl of an RWG basis function vanishes
in the interior of the panels on which the function is defined, so this term does
not contribute.

On the other hand, the first term here is proportional to ∇ · K. Change
integration variables to r =

√
ρ2 + z2, r dr = ρ dρ :

Ez(z) =
Z
(
∇ ·K

)
4ik

· z ·
∫ ∞
z

dr(r2 − z2)
[
− 3 + 3ikr − (ikr)2

]eikr
r4

The only terms in the integrand that lead to nonvanishing results in the z → 0
limit are those coming from the −3 term in the square brackets:

−3z ·
∫ ∞
z

[
1

r2
− z2

r4

]
dr = 3z ·

∣∣∣∣1r − z2

3r3

∣∣∣∣∞
z

= 2

and thus

lim
z→0

Ez(z) =
Z(∇ ·K)

2ik
=

(∇ ·K)

2iεω
=

σ

2ε
(61)

where σ = 1
iω∇ ·K is the surface charge density at the panel centroid.

Equation (61) is of course just the result we would have predicted on the
basis of electrostatic arguments, but it is useful to see here how it follows from
our full frequency-dependent formalism.

Meanwhile, an analogous calculation for the magnetic field yields

lim
z→0

Hz(z) = − (∇ ·N)

2iµω
. = − (∇ ·N)

2ikZ
. (62)

Note the minus sign compared to (61).
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16 BEM formulations for PBC bodies

16.1 Scattered field of an infinite PEC surface

Consider the scattered field produced by an induced surface-current density
K(x) on an infinite PEC surface S∞:

Escat(x) =

∫
S∞

ΓEE(x,x′) ·K(x′)dx′ (63)

= ikZ0

∫
S∞

G(x,x′) ·K(x′)dx′ (64)

where k = ω/c (ω is the angular frequency at which we are working) and Z0

is the impedance of free space (assume we are in vacuum for now). If we now
suppose that

• the surface S∞ consists of an infinite lattice of copies of a unit-cell surface
S0 translated through two-dimensional lattice vectors of the form

L = n1L1 + n2L2 (65)

and

• the surface current respects this periodicity in the Bloch sense, i.e. we
have

K(x + L) = eikB·L K(x) (66)

for some Bloch vector kB

then I can write the scattered field (67) as an integral over just the unit cell:

Escat(x) = ikZ0

∑
L

∫
S0

G(x,x′ + L) ·K(x′ + L) dx′

= ikZ0

∫
S0

{∑
L

eikB·LG(x,x′ + L)

}
︸ ︷︷ ︸

G(x,x′)

·K(x′) dx′

= ikZ0

∫
S0

G(x,x′) ·K(x′) dx′ (67)

where G is the dyadic periodic Green’s function, whose properties we now dis-
cuss.

16.2 Periodic Green’s functions

The dyadic periodic Green’s function introduced in (67) is

G(x,x′) =
∑
L

eikB·LG(x,x′ + L)

G(x,x′) =
∑
L

eikB·LG(x− x′ − L)
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with cartesian components

Gij(x,x
′) =

∑
L

eikB·LGij(x− x′ − L)

=
∑
L

eikB·L

[(
δij +

1

k2
∂i∂j

) eik|x−x
′−L|

4π|x− x′ − L|

]

Interchange differentiation and summation:

=
(
δij +

1

k2
∂i∂j

){∑
L

eikB·L eik|x−x
′−L|

4π|x− x′ − L|

}
︸ ︷︷ ︸

G0(x−x′)

where G0 is the scalar periodic Green’s function. (libscuff computes G0 and its
derivatives using Ewald summation together with an interpolation-table method
discussed below.)

I will also need the periodic version of the C dyadic (or “MFIE kernel”),

C(x,x′) =
∑
L

eikB·LC(x− x′ − L)

with components

Cij(x,x
′) =

∑
L

eikB·LCij(x− x′ − L)

=
1

ik
εij`∂`

∑
L

eikB·LG0(x− x′ − L).

Transpositional symmetries of periodic Green’s functions The non-
periodic G and C dyadics are invariant under simultaneous transposition of
indices and inversion of argument:

Gij(r) = Gji(−r), Cij(r) = Cji(−r). (68)

Now consider the implications of this for the periodic dyadics. In particular, we
write

Gij(kB; x,x′) =
∑
L

eikB·LGij(x− x′ − L)

Use (68):

=
∑
L

eikB·LGji(x
′ − x′ + L)
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Relabel the summation variable according to L→ −L:

=
∑
L

e−ikB·LGji(x
′ − x− L)

= Gji(−kB; x′,x) (69a)

and similarly

Cij(kB; x,x′) = Cji(−kB; x′,x). (69b)

Thus the periodic G and C dyadics are invariant under simultaneous transpo-
sition of indices, interchange of x,x′, and inversion of the Bloch vector.

Translational symmetries of periodic Green’s functions Suppose the
lattice basis vectors are L1,L2. Then we can write the sum that defines the
scalar periodic Green’s function in the form

G0(r) =

∞∑
n1,n2=−∞

eikB·(n1L1+n2L2)G0(r− n1L1 − n2L2)

Now consider evaluating G at an argument displaced through one full lattice
basis vector:

G(r + L1) =

∞∑
n1,n2=−∞

eikB·(n1L1+n2L2)G0(r + L1 − n1L1 − n2L2)

Add and subtract L1 in the exponent of the Bloch factor:

= eikB·L1

∞∑
n1,n2=−∞

eikB·[(n1−1)L1+n2L2]G0(r− (n1 − 1)L1 − n2L2)

Now just redefine n1 → n1 − 1 in the infinite sum:

= eikB·L1G(r).

More generally, for any lattice vector L I have

G(r + L) = eikB·LG(r).

16.3 Discretized EFIE formulation

Now consider solving for K(x) in the presence of illumination by an external
Bloch-periodic field Einc. We suppose that the current distribution in the unit
cell is represented approximately by an expansion in basis functions {bα(x)} :

K(x) ≈ kαbα(x). (70)
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The electric-field integral equation reads

Escat
‖ (x) = −Einc

‖ (x). (71)

As in the usual compact-surface case, inserting (67) and (70) and testing with
each element in the set {bα} yields a discretized PBC EFIE:∑

β

〈
bα

∣∣∣ikZ0G
∣∣∣bβ〉︸ ︷︷ ︸

Mαβ

kβ = −
〈
bα

∣∣∣Einc
〉

(72)

In other words, we obtain a formulation that looks exactly like the formulation
for compact objects, with the only difference being that the elements of the BEM
matrix involve the G kernel in place of the usual G dyadic Green’s function.

Note that the testing procedure that leads to (72) is only testing the sat-
isfaction of equation (71) for points x in the unit cell. However, the Bloch-
periodicity of the incident and scattered fields ensures that satisfaction of the
equation throughout the unit cell implies its satisfaction everywhere.

16.4 Symmetries of the PBC BEM matrix

For a PEC structure, the α, β element of the BEM matrix is

Mαβ(kB) = ik
〈
bα

∣∣∣G(kB)
∣∣∣bβ〉

= ik

∫ {
bαi(xα)Gij(kB; xα,xβ)︸ ︷︷ ︸

=Gji(−kB;xβ ,xα)

bβj(xβ)
}
dxαdxβ

= ik
〈
bβ

∣∣∣G(−kB)
∣∣∣bα〉

= Mβα(−kB)

where we used equation (69a). For a dielectric structure, the matrix elements
also involve inner products with C dyadics, but since C satisfies the same sym-
metry as G (??b), a similar equation holds in that case.

Thus in general for both PEC and non-PEC BEM matrices we have

M(kB) =
[
M(−kB)

]T
(73)

where T denotes the non-conjugate transpose.

Symmetries in the imaginary frequency case

For equilibrium Casimir computations we need elements of the BEM matrix at
imaginary frequencies.

M(iξ,kB) = M(iξ,kB)†
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17 PBC geometries in scuff-em

17.1 Overview

libscuff supports Bloch-periodic boundary conditions for periodically repeated
geometries. In this case,

• The .scuffgeo file will contain a LATTICE...ENDLATTICE section defining
between one and three lattice basis vectors L1,L2,L3. (In the present dis-
cussion we will consider the common case of two-dimensional periodicity,
so we have two lattice basis vectors L1,L2.) We assume that L1,L2 have
no component in the z direction.

• The only portion of the geometry that is meshed is that contained with
the “unit cell.”

• We will refer to the lattice cell obtained by displacing the unit cell through
displacement vector L = n1L1 + nyL2 as “lattice cell (n1, n2)” or some-
times “lattice cell L”.

• All currents and fields in lattice cell (n1, n2) are understood to be equal
to the corresponding currents and fields in lattice cell (0, 0) times a Bloch
phase factor eikB·L where kB is the Bloch wavevector.

17.2 Straddlers

Suppose we are trying to mesh the unit cell of a square-lattice geometry. Con-
sider the square mesh shown in the upper portion of Figure 8. If libscuffwere
given this mesh as a description of a compact surface, it would assign a total of
40 basis functions, as indicated by the arrows in the lower portion of Figure 8.
In particular, no basis functions would be assigned to exterior edges. Such a set
of basis functions would have the property that, when we consider the infinite
surface obtained by periodically replicating the mesh and the basis functions,
no currents could flow from one unit cell to the next; all currents would be
localized within the area of individual unit cells. To remedy this difficulty, lib-
scuff automatically adds straddlers to the surface meshes specified to the code
in geometries involving extended surfaces. This is illustrated in Figure 9.

17.3 Evaluation of surface currents within the unit cell

When evaluating the K and N surface-current distributions at panels that bor-
der the upper or right edges of the unit-cell mesh, we have to be careful to
account for the contribution of straddlers.

For example, consider evaluating the electric surface current at oints x inside
panel P24 in Figure 9. There are three RWG basis functions that contribute to
the current at this point: the functions associated with edges 29 and 42, and
the periodic image of the function associated with edge 40. Thus we compute

K(x) = k29b29(x) + k42b42(x) + eikB·L1k40b40(x− L1)
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Figure 8: The usual assignment of RWG basis functions to an input surface
mesh. Integers inside panels denote panel indices. Indices lying atop edges
denote RWG basis-function indices. Arrows indicate directions of current flow.
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Figure 9: Straddlers. Integers inside panels denote panel indices. Indices lying
atop edges denote RWG basis-function indices. Arrows indicate directions of
current flow.
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where L1 is the lattice basis vector through which we translate points in panel
32 to yield points in panel 24. [In this case we have L1 = (1, 0).]

17.4 Relations between BEM matrix elements

Looking at Figure 9, it seems obvious that BEM matrix elements between the
pair of basis functions {b2,b24} will be identical to those between the pair
{b4,b27}. (This much would be true even if we weren’t talking about periodic
geometries.)

Slightly less obvious is that matrix elements between the pair {b6,b18} will
also be related to matrix elements between the above two pairs—in fact, the
elements will be identical for kB = 0 and will differ by only a phase factor for
kB 6= 0. Let’s now derive this relationship.

Let L be a lattice vector and let {bα,bβ} and {bα′ ,bβ′} be two pairs of
RWG basis functions for which the displacement between centroids differs by
L. That is, we have

x0β − x0α = x0β′ − x0α′ + L

where e.g. x0β denotes the centroid of the support of bβ . Examples of basis-
function pairs in the mesh of Figure 9 for which this condition is satisfied include

(α, β) = (4, 27), (α′, β′) = (6, 18), L = (0, 1)

(α, β) = (0, 32), (α′, β′) = (7, 2), L = (1, 0).

17.5 Assembly of BEM matrix blocks

For a geometry in which the unit cell contains N surfaces, the BEM matrix at
Bloch wavevector kB has the structure

M(kB) =


T1(kB) U12(kB) · · · U1N (kB)

U21(kB) T2(kB) · · · U2N (kB)

...
...

. . .
...

UN1(kB) UN2(kB) · · · TN (kB)

 (74)

where Umn describes the interaction of surfaces m and n and Tm describes the
self-interaction of surface m.

Off-diagonal blocks

The off-diagonal blocks have the structure
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Umn(kB) =U00

mn (75)

+ eikB·L1U+0
mn + e−ikB·L1U−0mn

+ eikB·L2U0+
mn + e−ikB·L2U0−

mn

+ eikB·(L1+L2)U++
mn + e−ikB·(L1+L2)U−−mn

+ eikB·(L1−L2)U+−
mn + e−ikB·(L1−L2)U−+mn

+ UAB9

mn (kB).

In this equation, Uσσ′

mn is the usual (non-periodic) matrix describing the interac-
tion of surface m with a displaced copy of surface n; the displacement is through
displacement vector σL1 + σ′L2 where σ, σ′ ∈ {−1, 0, 1}. On the other hand,
UAB9
mn represents the interaction of surface m with the infinite set of Bloch-phased

and displaced copies of surface n excluding the contribution of the innermost 9
grid cells (“AB9” stands for “all but 9.”)

The point of the decomposition (75) is that the matrix blocks Uσσ′

mn are
independent of kB and hence need only be computed once at a given angular
frequency, after which they may be reused for any number of calculations at
different points in the Brillouin zone.

In scuff-em, the kB-independent matrix blocks Uσσ′

mn are computed using
the ordinary algorithm for assembling the blocks of the BEM matrix for compact
(non-periodic) geometries. An advantage of this is that singular integrals involv-
ing pairs of panels in adjacent cells with common edges or vertices are handled
correctly using singular-integral evaluation techniques present in scuff-em. For
example, in the mesh of Figure 9, panel 1 of the unit-cell mesh has a common
edge with panel 24 of the (−1, 0) mesh image.

Transposes of off-diagonal blocks

Once we have computed the Uσσ′

mn blocks for the mn block of the BEM, we may
re-use them to compute the nm block, as follows based on equation (73):

Unm(kB) =
[
Umn(−kB)

]T
(76)

=
[
U00

mn]T (77)

+ e−ikB·L1

[
U+0
mn

]T
+ eikB·L1

[
U−0mn

]T
+ e−ikB·L2

[
U0+
mn

]T
+ e+ikB·L2

[
U0−
mn

]T
+ e−ikB·(L1+L2)

[
U++
mn

]T
+ e+ikB·(L1+L2)

[
U−−mn

]T
+ e−ikB·(L1−L2)

[
U+−
mn

]T
+ e+ikB·(L1−L2)

[
U−+mn

]T
+ UAB9

nm (kB).
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Diagonal blocks

For the diagonal blocks there are additional symmetries, e.g. T−−m =
[
T++
m

]T
,

and hence the equivalent of (75) reads

Tm(kB) =T00

m (78)

+ eikB·L1T+0
m + e−ikB·L1

[
T+0
m

]T
+ eikB·L2T0+

m + e−ikB·L2

[
T0+
m

]T
+ eikB·(L1+L2)T++

m + e−ikB·(L1+L2)
[
T++
m

]T
+ eikB·(L1−L2)T+−

m + e−ikB·(L1−L2)
[
T+−
m

]T
+ TAB9

m (kB).

Hence to assemble T(kB) we need only compute and store 5 kB-independent
blocks Tσσ′

instead of the 9 kB-independent blocks required to assemble U(kB).

Assessing the connectivity of regions

An important subtlety in the BEM matrix assembly for dielectric geometries
treated by the PMCHWT formulation concerns the question of the “extended-
ness” or connectivity of material regions.

In general, the surfaces m,n whose interaction is described by the Tm and
Umn blocks in (74) will interact through one or two common regions (material
media). (More specifically, T blocks will typically involve two common regions,
while U blocks will typically involve one common region.)

The BEM matrix elements
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In

[
g(r)

]
≡
∫ 1

0

wng(wr)dw

1. First, for g(r) = rp we have simply In
[
g(r)

]
= rp

p+n+1 .

2. Next, for the case g(r) = eikr

r we find

In

[
g(r)

]
=

1

nrTn

[
1− eikr

(
T0 + T1 + · · ·+ Tn−1

)]
.

where Tn ≡ (−ikr)n
n! . For computational purposes, this expression ... |kr| >

0.1 ...

In

[
g(r)

]
= =

eikr

nrTn

[
e−ikr − T0 − T1 − · · · − Tn−1

]
=
eikr

nr
· ExpReln(−ikr)

ExpReln(−ikr) ≡ 1

Tn

[
e−ikr − T0 − T1 − · · · − Tn−1

]
= 1 +

(−ikr)
(n+ 1)

+
(−ikr)2

(n+ 1)(n+ 2)
+ · · · = n!

∞∑
m=0

(−ikr)m

(m+ n)!

3. Finally, for the case g(r) = (ikr−1)eikr
r3 , we have

In

[
g(r)

]
=

n− 1

(n− 2)Tn−2r3

[
1− eikr

(
T0 + T1 + · · ·+ Tn−3 +

n− 2

n− 1
Tn−2

)]
.

For small kr we again rewrite this in the form

In

[
g(r)

]
=

(n− 1)eikr

(n− 2)Tn−2r3

[
e−ikr − T0 − T0 − · · · − Tn−2 −

1

n− 1
Tn−2

]
where again Tn ≡ (−ikr)n

n! .


